Tree Pattern Matching for ML
(extended abstract)

Marianne Baudinet

" Stanford University
Computer Science Department
Stanford, CA 94305

David MacQueen

AT&T Bell Laboratories
600 Mountain Avenue
Murray Hill, NJ 07974

December 6, 1985

Tree Pattern Matching for ML
(extended abstract)

Marianne Baudinet

Stanford University
Computer Science Department
Stanford, CA 94305

David MacQueen

AT&T Bell Laboratories
600 Mountain Avenue
Murray Hill, NJ 07974

1. Introduction

In the programming language ML, a function can be defined by a sequence of pattern-
expression pairs, called rules. When such a function is invoked, its argument is matched against
the patterns and the first rule whose pattern matches is selected and its expression is evaluated. If
none of the patterns match the argument, a run-time exception is generated. A pattern is either
simple (a variable or constant), a tuple of patterns, or a constructor operation applied to a tuple of
patterns. Thus patterns are tree-shaped terms. An argument value can also be viewed as a tree-
shaped term formed with constructors, tuples, and atomic values (i.e. values of primitive, abstract,
or functional types). Function application therefore involves determining which of a sequence of
pattern trees matches the given argument tree. This paper addresses the problem of compiling
such sequences of patterns into efficient pattern-matching code. The goal is to minimize the
number of tests or discriminations that have to be applied to any given argument to determine the
first pattern it matches.

Our approach is to transform a sequence of patterns into a decision tree, i.e. a tree which
encodes the patterns and defines the order in which subterms of any given value term have to be
tested at run-time to determine which pattern matches the value. Each internal node of a decision
tree corresponds to a matching test and each branch is labeled with one of the possible results of
the matching test and with a list of the patterns which remain potential candidates in that case. It
is then straightforward to translate the decision tree into code for pattern matching. During the
construction of a decision tree it is also easy to determine whether the pattern set is “exhaustive”,
meaning every possible argument value matches at least one pattern, and whethei there are any
“redundant” patterns (i.e. patterns that are matched only by values that are already matched by
an earlier pattern). Nonexhaustive definitions and redundant patterns are anomalies that can be

usefully reported by the compiler.

Our goal in constructing the decision tree is simply to minimize the total number of test-
nodes. This minimizes the size of the generated code and also generally minimizes the number of
tests performed on value terms. However, we have discovered that finding the decision tree with
the minimum number of nodes is an NP-complete problem. This result is established by reduction
from one of the trie index construction problems (pruned O-trie space minimization), which was
proved to be NP-complete in [Co76, CS77). Therefore, we developed a set of efficient heuristics
that in practice produce an optimal decision tree in almost all cases.

The problem of string matching has been thoroughly studied and efficient algorithms have
been developed for it ([AC75, BM77]). In their work on term-rewriting languages [HO79, HO82a,
HO82b, OD85], Hoffmann and O’Donnell have generalized some of these algorithms to tree pat-
tern matching. Their goal was to find the position of all the subterms of a given subject term that
are matched by one of a given set of patterns, using techniques that can assimilate local changes in
the value term without having to rescan the entire tree. In [HO82a, OD85] a bottom-up method
was proposed. It is based on the idea that one searches for the position of all the subterms
matched by one of the given patterns. Two other methods were also proposed: a top-down algo-
rithm [HO82a, OD85] and a method called flattened pattern matching [OD85], which both con-
sisted in reducing the tree matching problem to string matching and then using the Aho-Corasick
[AC75] string matching algorithm. These techniques turn out to be inappropriate for the ML pat-
tern matching problem, which involves finding the first pattern in the sequence which matches the
whole given value term. Reducing pattern matching in ML to string matching is not a good idea in
general, since the overhead of transforming the tree structured argument would be excessive. It is
much better to work directly with the existing tree structure.

Augustsson [Au85] presents a technique for compiling ML pattern matching used in the Lazy
ML system developed at Gothenburg. Their approach merges the patterns into a nested case con-
struct, with a nested case for each level of structure in the patterns. Because their compiler uses
lazy evaluation they are restricted to consider pattern components in a strictly left-to-right order to
preserve termination properties of programs. This involves some backtracking and redundant
effort which is avoided by our technique, because we assume call-by-value and have the freedom to
examine components of the argument in any order. [Ca84] alludes to an earlier version of our
algorithm for pattern matching in ML.

We start by describing the context in which tree pattern matching occurs in ML and defining
possible properties of sequences of patterns. We then describe the abstract syntax of patterns and
value terms and specify the matching problem. Next, we describe the sort of decision trees we use
and define what we call the dispatching problem. Since it is NP-complete, we introduce several
heuristics that provide a practical solution for the dispatching problem.

2. Pattern matching in ML

ML is a functional language in the weak sense that functions are “first-class’’ values and the
basic unit of organization of programs is the function; it is not ‘‘purely applicative’’ because it
includes a reference construct admitting assignment as well as exceptions with dynamic handlers.
In ML, as in other functional languages, a typical function analyzes its argument by recognizing its
structure and breaking it down into components. This can be done in the conventional way using
conditional expressions in conjunction with recognizer predicates (e.g. null) to discriminate between
cases and then applying selector functions (e.g. hd and #l) to extract components. In ML one can
also define functions in clausal form, i.e. as a sequence of rules, each of which has its associated
argument pattern and body expression, somewhat in the style of Prolog (but with an entirely dif-
ferent semantics). The sequence of rules itself is called a match. In this form, pattern matching is
used to analyze the argument, simultaneously discriminating between cases and binding com-
ponents to variables appearing in the pattern. These two forms of function definition are illus-
trated by the following examples.’

Example 1
(11 fun diff (x, y) = ifnull x then y
else if null y then x
else diff (1l x, 1l y);
(20 fun diff (nil, y) = y | (1)
diff (x, ni) = x| (2)

diff (cons(hdx, tlx), cons(hdy,tly)) = diff (tlx, tly); (3)

[1] and [2] are equivalent ML definitions of a function 4iff with an argument which is a pair
of lists. [1] uses the if-then-else construction while [2] is in clausal form. The match contains
three patterns which cover all the possible arguments, i.e. they are exhaustive. (1) and (2) match
all the cases where at least one component of the pair is nil while (3) matches the remaining values
where both components are non-null and therefore are the result of consing an object onto a list.
ML allows non-exhaustive matches at the risk of possible run-time exceptions. Non-exhaustive
matches appear in the definition of functions which are designed to be applied to restricted kinds
of data. For example, if one expects that a function is to be applied only to non-null lists, then
one might omit the zil case in its definition.

Patterns (1) and (2) are said to be non-disjoint or to overlap because there is at least one pos-
sible value which they both match, ie. (nil, nil). Matches are ordered sequences of rules, and the
ordering of the rules imposes a priority ordering among their respective patterns. Thus, in defini-
tion [2], pattern (2) can be considered the matching pattern only for arguments which are not

' hd and ¢ are the usual list selector functions, analogous to the Lisp car and cdr functions. cons is the list con-
structor, analogous to the Lisp cons. null is the usual predicate recognizing the empty list.

matched by pattern (1).

When pattern (3) matches an argument, hdx and hdy both get bound to a value during the
matching process, but those values are never used. ML allows us to avoid introducing such useless
variables by using wildcard, denoted ““_ . By definition, wildcard matches any value. So, rule
(3) in definition [2] of diff could be written as:

diff (cons(_tix), cons(_tly)) = diff (tIx, tly); (3')

As mentioned above, even though patterns can overlap they should be irredundant i.e., each
pattern in a given sequence must match some value which is not matched by some pattern earlier
in the sequence. For example, if a variable or wildcard is a pattern in a match, it has to be the last
one of the match, otherwise all the following patterns would be redundant. Finally, patterns must
be linear, meaning that no variable can occur more than once in a pattern. Nonlinear patterns are
a special case of ‘‘conditional patterns’ for which there is a side condition that must be satisfied
before the match is successful. ML does not support such conditional patterns.

ML is a strongly typed language, and pattern matching is intimately connected with the type
system. In particular, pattern matching is supported by certain types known as concrete or data
types. These types generalize Pascal’s variant record and enumeration types as well as Lisp’s data-
type of lists. A concrete type is a disjoint union of types, possibly recursive. A typical example of
an ML concrete type declaration is

datatype tree = nulltree | leaf of int | node of (tree * string * tree)

This defines a type tree of binary trees with leaves having integer labels and interior nodes with
string labels. It is a disjoint union of the three types unif?, int, and tree * string * tree, and nulltree,
leaf, and node are called (data)constructors because they construct tree values from elements of the
component types. Their types are implicitly declared as part of the declaration of free as follows:

nulltree : tree
leaf : int —Xree
node : tree * string * tree —Xree

The special property of data constructors is that the values they produce do not reduce to any
simpler form. For example, a tree node remains forever a tree node and its three arguments or
components are uniquely determined by the node value. Furthermore, any value of type tree must
have been constructed using exactly one of the constructors nulltree, leaf, or node. This makes it
feasible to analyze values of type tree by matching against pattern terms that are also built using
these three constructors. For instance, in the scope of the above declaration we could write the
following clausal function definition:

2 unit is the trivial type containing one component. A nullary constructor such as nulltree might be given the type
unit —ree, but the convention is to treat it as a constant of type free.

fun depth nulltree = 0 |
depth(leafm) = 1 |

depth(node (t1,5,12)) = 1+ max(depth t1, depth t2)

Concrete types also include n-ary type constructors. These are introduced by parameterized
definitions such as the following definition of list:3

datatype o list = nil | cons of (o * o list)

The unary type constructor list thus defined can be used to construct list types like int list or
(bool * (int —3tinglist)) list. The structure of values of such compound types is determined by the
top-level type constructor, so any value of type 7 list is constructed by nil or cons, no matter what
type T may be. ML allows polymorphic types, which are, roughly speaking, type schemas with free
type variables. The constructors associated with type constructors are polymorphic. For example,
nil: o list and cons: o * o list —o list. A type which does not contain any type variable is said to
be monomorphic (e.g. int list). Replacing a type variable in a polymorphic type by any ML type
produces an instance of that type. The ordering “‘is an instance of”’, denoted < was introduced in
[Mi78]. For example, int list < o list. A polymorphic value can be used with any instance of its
polymorphic type: e.g. cons(3,nil): int list.

Other types in ML include primitive types like int, functional types like int —¥nz, and abstract
types. So far as pattern matching is concerned these types are atomic or unstructured; their values
cannot be analyzed by pattern matching and will only match variables or wildcard (or integer con-
stants in the special case of inf). We will call such values atomic.

3. Syntax of patterns and terms, matching criterion and matching problem
Syntax of patterns and terms

We consider a somewhat simplified version of the ML syntax introduced in [Mi85].

p = - (wildcard)
| v (variable)
| ¢ (constant)
| @1y ..., pa) (tuple of patterns)
| kp’ (constructor k applied to pattern p’)

All the variables appearing in a pattern have to be distinct and they are considered to be bound by
their appearance in the pattern. The scope of such bindings is the body expression associated with
the pattern in its rule. Patterns also have to be well-typed, which puts further restrictions on their
formation. For instance, cons(3) is not well-typed, while cons(x) is well typed and implies that
the type of the bound variable x is T * T list for some appropriate type T (note that the argument of

Early Greek letters like @ are used as type parameters and type constructors like list are always written as postfix
operators.

cons does not have to be an explicit pair).

The patterns match values which are tree-shaped data structures formed by the application of
constructors and tupling to atomic values. Thus values can be thought of as having an abstract
term structure, and we will call them value terms to emphasise this view. Their abstract syntax is
analogous to that of patterns:

L= atom (atomic value)
| ¢ (constant)
| (t1, ..., 1,) (tuple of terms)
| k¢ (constructor k applied to term t)

Matching criterion for a single pattern

The definition of when a pattern matches a value term is straightforward and can be
expressed formally in terms of structural induction on the pattern. It is useful to define a more
refined notion of agreement between a pattern and a value term on a subterm. Informally, a pattern
agrees with a value term on a subterm (of the value term) iff they have the same structure (con-
structor or tuple-arity) at each node along the path from the root to the subterm (inclusive).
Example 2 illustrates this concept.

Example 2. Consider the value term ¢t = (true, cons (1, nil)) and the following sequence of
patterns of type (bool * (« list)) :
(1) py= (true,)
(2) p = (false, nil)
(3) ps = (false, cons (x, nil))
4 pa = (alse, cons (y, 2))

p) agrees with ¢ on its first component because they both have true as first component, whereas p,,
ps and p4 do not. p; also agrees with 7 on its second component because wildcard matches and
therefore agrees with any value term. ps and p, both have a second component of the form
cons p’ and therefore agree with ¢ on this subterm. They also agree with ¢ on both arguments of
cons (variables match and therefore agree with any value term).

Formally, given a pattern p and a value term f, p agrees with t on a subterm t* of t if and only
if one of the following conditions is true:

e p= _ (wildcard).

) D is a variable.

. p = ¢, where c is a constant, and ¢t = c.

o p=(Pr s P t= Uy, ooy t),and 1° = 1.

o p= (P1» Padr 1= (1, ..., 1), 1" is a subterm of ¢;, for some j such that 1 < j < 2, and
p; agrees with #; on the subterm ¢".

e p=kp andt’=1t=kt.
e p=kp',t=kt, t isasubterm of ¢’ and p’ agrees with ¢’ on ¢°.
Clearly a pattern p matches a term ¢ if and only if p agrees with ¢ on all the subterms of £. A

pattern does not need to be of exactly the same type as a value in order to match it. In fact, p of
type T may match ¢ of type o if and only if ¢ is an instance of T i.e., 0 < 1.

Matching criterion for a sequence of patterns: the matching problem

A matching problem consists of a finite sequence of patterns p,, ..., p, of type T and a
value term ¢ of type ©° where ©° < T. The solution is the first pattern in the sequence
which matches ¢, if one exists. If none of the patterns matches ¢, the matching problem
has no solution.

4. Decision trees and the dispatching problem

A function in clausal form and a particular argument value determine a matching problem
consisting of the pattern sequence from the function’s rules and the value term represented by the
argument. The ML system must solve this matching problem in the course of evaluating the func-
tion application. The most straightforward approach would be to attempt to match the argument
with each pattern in turn (using the obvious top-down matching routine), starting over after every
failure. This algorithm is quite inefficient since the information gained about the structure of the
argument in each partially successful match is discarded before doing the next match. We propose
instead to analyze the whole sequence of patterns at compile time and generate efficient run-time
matching code. Efficiency depends on avoiding backtracking, and carefully choosing the order in
which to explore the argument so as to determine the correct matching pattern with as little effort
as possible (i.e. the smallest number of case discrimination tests). Example 2 exhibits the effect of
the order of subterm testing on the efficiency of the matching process.

Example 2 (continued). We consider again the term f = (true, cons (1, nil)) and the
sequence of patterns of Example 2:

(1) p,= (true,)

2 p2
(3) ps

(4) ps= (false, cons (y, 2))

(false, nil)

(false, cons (x, nil))

We want to find which pattern of the sequence matches 7, i.e., the first pattern that agrees with ¢
on all its subterms. To do this, we must compare the subterms of ¢t with subpatterns, and there are
different orders in which this can be performed. We can start testing on the first component or on
the second component of the tuple 7. Suppose we start testing on the first one. We find that p, is
the only pattern which agrees with ¢ on its first component. And since the second component of p,
is _ (wildcard) which matches everything, no further test has to be performed to establish that p,
is the solution of this matching problem. Another possibility would be to start testing on the second

-8-

component of ¢ instead. This discards p, whose second component does not agree with cons. We
are left with patterns p,, p; and ps. Now, there are three tests that can possibly be performed :
test on the first component of f, on the first component of the argument of cons or on the second
component of the argument of cons. The test on the first component of ¢ still leads immediately to
the desired solution. The tests on the arguments of cons are useless : they do not help discarding
any pattern because p,, p3 and p,4 all agree with ¢ on these subterms. We will say that these tests
are irrelevant to p;, p; and p4 (see section 5).

We describe our goal as follows.
The dispatching problem (1)

Given a sequence of patterns p,, ..., p, of type 1, find out in which order the subterms
of any possible term ¢ of type T’ (t” < 1) have to be examined to determine with the
minimum number of tests on the subterms of ¢, which pattern p; (1 < i £ n) is the
solution to the matching problem defined by p,, ..., p, and ¢.

When compiling a function in clausal form, we build a decision tree which determines the
order in which subterms of any term are to be examined to find the first pattern that matches that
term. We attempt to make this decision tree optimal or minimal, in the sense that the order
imposed on subterm-testing is such that the matching pattern can be found with a minimum
number of tests. Each node of a decision tree represents a test that can be carried out on a sub-
term discriminating between constructor cases. The branches coming out of a node correspond to
the possible results of the test performed at that node (i.e. possible constructors for that subterm,
which are determined by the type of the subterm). Each branch is labeled with a type constuctor
and a set of pattern indices representing the patterns that were still possibly matching (‘live’”)
before the test and that have this constructor as result of the test. At run-time, when a value term
has to be matched against one of the patterns, the code executed corresponds to going down the
decision tree from the root to one of the leaves, executing the tests corresponding to the test-nodes
along the path. Figure 1 exhibits the optimal decision tree for the match given in Example 2.

CIOM1.23.4)

true false
{1} {2,3,4}
y cons
}

2 {3,4}
nil cons
{3} {4)

- Figure 1 -

A decision tree is either an empty tree or a test-node. Each test-node carries two kinds of infor-
mation: an identification of the subterm of a value term on which the test is to be carried out (the
numbers in the nodes on Figure 1) and a set containing the indices of the patterns which have not
been discarded yet at this point in the tree (the sets attached to the nodes on the figure). Each
branch coming out of a test-node is labelled with constructors of the type of the subterm to which
the test applies. No constructor can appear on more than one branch coming out of a test-node.
A leaf is a node that carries either a singleton containing the index of the pattern which is identi-
fied as the matching pattern by the sequence of tests corresponding to the path from the root to it
if such a pattern exists, or an empty set.

The decision tree of a sequence of patterns is an empty tree if the sequence is empty or if it
has only one rule with a pattern equal to wildcard or a variable (i.e., no test is necessary to per-
form a matching). Otherwise, it is a test-node having attached to it the set of indices of all the
patterns in the sequence.

A minimal decision tree is a decision tree which has the minimum possible number of test-
nodes.

The dispatching problem can be reformulated as follows :
The dispatching problem (2)
Build an optimal decision tree for a given sequence of patterns p,, .., p, of type T.

Theorem: The dispatching problem is NP-complete.

The proof uses reduction from the pruned O-trie space minimization problem described in [Co76,
CS77]. This result motivates us to look for practical heuristics for building decision trees.

5. Heuristic approach

Suppose we are given a sequence of patterns p,, ..., p, and we wish to build the associated
optimal decision-tree. This effectively involves choosing for any given value term ¢, the order in
which subterms of ¢ have to be tested. The subterm-testing order can be different for different
terms.

In order to get an optimal decision-tree, we have to select, at every stage of the top-down
construction, the best test-node among a set of possible tests. As indicated by the NP-completeness
of the dispatching problem, such a search leads to an exponential explosion of the computation.
Therefore the selection of a test uses heuristics and actually produces the heuristically optimal test.
In this section we describe a sequence of heuristics that have been found to produce optimal trees
in almost all cases. The relevance heuristic is applied to the original set of possible tests. If it
succeeds in isolating one test, the search ends, otherwise, the branching factor heuristic is applied
to the tests considered equivalently optimal by the relevance heuristic. If the branching factor
heuristic does not isolate a test, then the arity factor heuristic is applied to the set of tests con-
sidered equivalent under the previous heuristic.

The relevance heuristic

-10 -

This heuristic tends to minimize the decision-tree and also the matching time by taking
advantage of the fact that we deal with sequences rather than sets of patterns and that if two pat-
terns overlap, the one with the lowest index is preferred. Example 3 illustrates the idea.

Example 3. We consider the following patterns of type (o list * o list).
(1 (i, x)
@ G, nid

There are only two possible decision-trees for this sequence (see Figures 2 and 3) depending on
whether one starts testing on the first or on the second component of the argument.

R CZO12)

y gons nil cons
i) @) 12y O ()
nil cons nil &s y

2} 0 {1} 2y M {)

cons

- Figure 2 - - Figure 3 -

The tree on Figure 2 has two decision-nodes whereas the one on Figure 3 has three such nodes, so
the former is optimal. Pattern (1) matches any value term which has #il as first component what-
ever the second component is. Pattern (2) matches all the value terms having #nil as second com-
ponent and which are not matched by (1). Therefore, it is better to start testing on the first com-
ponent which will more quickly isolate pattern (1) as a leaf of the decision-tree. We will say that
the test on the second component is not relevant to pattern (1) because pattern (1) appears on all
the branches coming out of that test-node. The test on the first component of the tuple is relevant
to pattern (1) but not to pattern (2). The test on the second component is relevant to pattern (2)
but not to pattern (1). Since we deal with sequences of patterns, we try to select the tests that are
relevant to patterns of lower index first.

A test on a subterm is relevant to a pattern p; if and only if p; does not agree with all the
possible values on that subterm. In terms of decision-trees, a test on a subterm is relevant to a
pattern p; if and only if i does not appear in the set of live rule indices which label each successor
of that test. Given a set of possible tests #set and a set of live rule indices rset, the relevance
heuristic searches for the least index i in rset such that at least one test in fsef is relevant to p;. If
there is no such index, no test in tset is relevant to any pattern in rset and one has reached a leaf
of the tree. Otherwise, one computes the subset frel of fset containing the tests that are relevant to
pi- If trel is a singleton, its element is the next desired next test. Otherwise, the next heuristic
selection is applied on trel.

-11 -

The branching factor heuristic

The branching factor heuristic tries to minimize the number of test-nodes by favoring the
choice of tests with low branching factor first. The intuition behind this is that the decision-tree
will end up with fewer internal nodes if the nodes selected first (i.e., closer to the root) have lower
branching factor (i.e., lower number of successors). Example 4 illustrates the idea.

Example 4. We consider the following sequence of patterns of type (bool * color) where
color is a concrete type defined by : type color = red | blue | green.

(1) (true, green)
(2) (salse, green)

Figures 4 and 5 exhibit the two possible decision-trees for this sequence of patterns.

2o 2 IO

red/bly een tru false
() {1,2} {1} {2}
true false red/blye reen red/blde reen
{1} {2} {} {1} {} {2}
- Figure 4 - - Figure S -

Even though the color type has three possible constructors, only one of them, green, is present in
the sequence of patterns and the remaining ones are not covered by any pattern (there is no pat-
tern with a variable or wildcard as that subterm). This sequence is obviously not exhaustive. The
effective branching factor of the test on the second component of the tuple is one. There are two
constructors of the type bool (tfrue and false) and they are both present in the sequence. So the
branching factor of that test is two. Figure 4 shows the optimal decision-tree. Its root is a test on
the second component of the tuple i.e., the test with the least branching factor.

The criterion we implemented for this heuristic selection encompasses not only the branching
factor but also some information which tends to favor tests on subterms where no pattern agrees
with all values (i.e., has a variable or wildcard as that subterm or as a more general subterm).
This relies on the idea that when a pattern agrees with all values on a particular subterm, the test
on this subterm is irrelevant to the pattern and performing it does not help discriminating the pat-
tern. The full paper will give a more detailed description of how to evaluate the criterion used by
this heuristic.

The arity factor heuristic

The arity factor of a test on a subterm of type T is equal to the sum of the arities of the con-
structors which appear at least once in the corresponding subterm of a pattern in the sequence.

-12-

Our strategy consists in selecting tests with low arity factor first. This corresponds intuitively to
minimizing the potential branching of the tree and once again in trying to put off the selection of
nodes with high branching, therefore minimizing the number of test-nodes in the tree.

6. Conclusions

The problem of pattern matching is crucial to the efficiency of function calls in ML, and
therefore it is critical to the efficiency of the language as a whole. Although the NP-completeness
result indicates the intrinsic difficulty of a complete analysis of a set of patterns, we have found
that in practice the heuristically based methods described here work extremely well. The algorithm
embodying these heuristics has been extensively tested and will be incorporated in a new ML com-
piler being developed by one of the authors.

Future work on this problem will be directed to refining our analysis of the behavior of the
heuristics and acquiring statistical evidence of their effectiveness in an actual compiler. There are
several possible generalizations of the matching problem to which these methods could be applied,
including nonlinear and conditional pattern matching.

References

[AC75] A. V. Aho and M. J. Corasick, “Efficient String Matching: An Aid to Bibliographic
Search”, Communications of the ACM, Vol. 18, No. 6, June 1975, pp. 333-340.

[AG] A. V. Aho, M. Ganapathi, “ Efficient Tree Pattern Matching: an Aid to Code Genera-
tion”, 12th Annual ACM Symposium on Principles of Programming Languages, New Orle-
ans, January 1985, pp. 334-340.

[Au84] L. Augustsson, “A Compiler for Lazy ML”, 1984 ACM Symposium on Lisp and Func-
tional Programming, Austin, Texas, August 1984, pp. 218-227.

[Au84] L. Augustsson, “Compiling pattern matching”, Functional Programming Languages and
Computer Architecture, J-P. Jouannaud, Ed., Lecture Notes in Computer Science, Vol
201, Springer-Verlag, Berlin, 1985, pp. 368-381.

[Ca84] L. Cardelli, “Compiling a Functional Language”, 1984 ACM Symposium on Lisp and
Functional Programming, Austin, Texas, August 1984, pp. 208-217.

[Ca83a] L. Cardelli, “The Functional Abstract Machine”, Technical Report TR-107, AT&T Bell
Laboratories, Murray Hill, New Jersey, 1983.

[Ca83b] L. Cardelli, ‘ML under Unix’’, Polymorphism newsletter, Vol. 1.3, December 1983.

[Co76] D. Comer, Trie Structured Index Minimization, Ph.D. Thesis, Pennsylvania State Univer-
sity, August 1976.

[CS77] D. Comer and R. Sethi, “The Complexity of Trie Index Construction”, Journal of the
ACM, Vol. 24, No. 3, July 1977, pp. 428-440.

[GI79] M. R. Garey and D. S. Johnson, Computers and Intractability:A Guide to the Theory of
NP-Completeness, W. H. Freeman and Company, San Francisco, 1979.

[GMWS82]M. J. Gordon, A. J. Milner and C. P. Wadsworth, Edinburgh LCF, Springer-Verlag Lec-
ture Notes in Computer Science, Vol. 78, Berlin, 1982.

[HO79] C. M. Hoffmann and M. J. O’Donnell, “An Interpreter Generator Using Tree Pattern
Matching”, 6th Annual ACM Symposium on Principles of Programming Languages, San
Antonio, Texas, January 1979, pp. 169-179

[HO82a] C. M. Hoffmann and M. J. O’Donnell, ‘Pattern Matching in Trees”, Journal of the
ACM, Vol. 29, No. 1, January 1982, pp. 68-95.

-13 -

[HO82b] C. M. Hoffmann and M. J. O’Donnell, ‘“Programming with Equations”’, ACM Transac-

[OD85]
Mi78]
(Mi84a]

[Mi84b]

[Mi85]

tions on Programming Languages and Systems, Vol. 4, No. 1, January 1982, pp. 83-112.

M. J. O’Donnell, Equational Logic as a Programming Language, MIT Press, Cambridge,
Massachusetts, 198S.

R. Milner, “A Theory of Type Polymorphism in Programming”, Journal of Computer
and System Sciences, Vol. 17, No. 3, December 1978, pp. 348-375.

R. Milner, “A Proposal for Standard ML”, 1984 ACM Symposium on Lisp and Functional
Programming, Austin, Texas, August 1984, pp. 184-197.

R. Milner, ‘“The Standard ML Core Language”, Internal Report CSR-168-84, Depart-
ment of Computer Science, University of Edinburgh, Edinburgh, Scotland, October
1984.

R. Milner, ‘“The Standard ML Core Language (Revised)”’, Polymorphism, 11, 2, October
1985.

