
ML under VMS

Luca Cardelli

1982

1 Introduction and examples1

ML is an interactive language. The system repeatedly prompts for input and
reports the results of computations; this interaction is said to happen at the top
level of evaluation. At the top level one can evaluate expressions or perform
declarations.

To give a first impression of the system, we reproduce below a session at a
terminal in which simple uses of various ML constructs are illustrated. To
make the session easier to follow, it is split into a sequence of sub-sessions
displayed in boldface. Each sub-session is accompanied by an explanation; the
complete session consists of the concatenation of the boldface areas. A complete
description of the syntax of ML is given in —, and of the semantics in —.

1.1 Expressions

The ML prompt is ‘- ’, and so lines beginning with this contain the user’s
contribution; all other lines are output by the system.

- 2+3;

5 : int

- it;

5 : int

ML prompted with ‘- ’; the user then typed ‘2+3;’ followed by a return; ML
then responded with ‘ 5 : int’, a new line, and then prompted again. The
user then typed ‘it;’ followed by a return, and the system responded by typing
‘ 5 : int’ again.

In general to evaluate an expression e one types ‘e;’ followed by a return; the
system then prints e’s value and type. The value of the last expression evaluated
at top level is remembered in the identifier ‘it’.

1This document follows the pattern of Section 2.1 of Edinburgh LCF[1].

1

1.2 Declarations

The declaration ‘let x = e’ evaluates e and binds the resulting value to x.

- let x = 2*3;

> x = 6 : int

- it = x;

false : bool

The prefix ‘> ’ indicates that a new declaration is taking place, as opposed
to an evaluation which is prefixed by ‘ ’. Notice that declarations do not
effect ‘it’. To bind x1, . . .,xn simultaneously to the values of e1, . . ., en one
can perform either the declaration ‘let x1=e1 and x2=e2 ... and xn=en’ or,
equivalently, the declaration ‘let x1,...,xn = e1,...,en’. In the first case
we use a environment operator (or declaration operator) ‘and’, while in the
second case we use a structured variable (or varstruct) ‘x1,...,xn’.

- let y = 10 and z = x;

> y = 10 : int

| z = 6 : int

- let x,y = y,x;

> x = 10 : int

| y = 6 : int

Note that the declaration prefix ‘> ’ converts to ‘| ’ after the first definition.

Cascaded declarations are obtained by the environment operator ‘enc’ (enclose)
which makes earlier declarations available in later declarations, and has other-
wise the same effect as ‘and’.

- let x = 10 enc y = x+5;

> x = 10 : int

| y = 15 : int

- let x = 5 and y = x+5;

> x = 5 : int

| y = 15 : int

Private declarations are obtained by the environment operator ‘ins’ (inside)
which makes a declaration available inside another declaration, but not any-
where else.

- let x = 7 ins y = x+5;

> y = 12 : int

- x;

5 : int

Complex declarations can be bracketed by ’{’ and ’}’; otherwise the ‘and’ opera-
tor binds stronger than ‘enc’ and ‘ins’ (which have the same binding power) and
all three operators are right associative. In the following example declaration
brackets make a difference.

2

- let x = 10 and {z = 5 ins y = 10+z};

> x = 10 : int

| y = 15 : int

A declaration d can be made local to the evaluation of an expression e by
evaluating ’let d in e’. The expression ’e where d’ is equivalent to ’let d in e’.

- let x = 2 in x*y;

30 : int

- x;

10 : int

- x*y where x = 2;

30 : int

1.3 Functions

To define a function f with formal parameter x and body e one performs the
declaration: ’let f x = e’. To apply f to an actual parameter e one evaluates
the expression: ’f e’.

- let f x = 2*x;

> f = : int -> int

- f 4;

8 : int

Functions are printed as a ‘
’ followed by their type (‘
’ is chosen as an ascii approximation of the greek letter lambda). Application
binds tighter than anything else in the language; thus, for example, ‘f 3 + 4’
means ‘(f 3)+4’ not ‘f(3+4)’. Functions of several arguments can be defined:

- let add x y = x+y;

> add = : int -> (int -> int)

- add 3 4;

7 : int

- let f = add 3;

> f = : int -> int

- f 4;

7 : int

Application associates to the left so ‘add 3 4’ means ‘(add 3)4’. In the expression
‘add 3’, add is partially applied to 3; the resulting value is a function - the
function of type ‘int -¿ int’ which adds 3 to its argument. Thus add takes its
arguments one at a time; we could have made add take a single argument of the
Cartesian product type ‘int # int’:

3

- let add(x,y) = x+y;

> add = : (int # int) -> int

- add(3,4);

7 : int

- let z = (3,4) in add z;

7 : int

- add 3;

Type Clash in: (add 3)

Looking for: int # int

I have found: int

As well as taking structured arguments (e.g. ‘(3,4)’) functions may also return
structured results.

- let sumdiff(x,y) = (x+y,x-y);

> sumdiff = : (int # int) -> (int # int)

- sumdiff(3,4);

(7,~1) : int # int

Incidentally, note that the unary negation operation on numbers is ‘ ’ instead
of ‘-’; hence one should write ‘~3’ for negative numbers and ‘~(n-1)’ for the
complement of n-1.

1.4 Recursion

The following is an attempt to define the factorial function:

- let fact n = if n=0 then 1 else n*fact(n-1);

Unbound Identifier: fact

The problem is that any free variables in the body of a function have the bindings
they had just before the function was declared; ‘fact’ is such a free variable in
the body of the declaration above, and since it isn’t defined before its own
declaration, an error results. To make things clear consider:

- let f n = n+1;

> f = \ : int -> int

- let f n = if n=0 then 1 else n*f(n-1);

> f = \ : int -> int

- f 3;

9 : int

Here ‘f 3’ results in the evaluation of ‘3*f(2)’, but now the first f is used so
‘f(2)’ evaluates to 2 + 1 = 3, hence the expression ‘f 3’ results in 3 ∗ 3 = 9.
To make a function declaration hold within its own body ‘let rec’ instead of
‘let’ must be used. The correct recursive definition of the factorial function is
thus:

4

- let rec fact n = if n=0 then 1 else n*fact(n-1);

> fact = \ : int -> int

- fact 3;

6 : int

‘rec’ is another environment operator like ‘and’, ‘enc’ and ‘ins’; it can be
nested inside complex declarations, and it binds more weakly than ‘and’ but
more strongly than ‘enc’ and ‘ins’.

1.5 Assignment and sequencing

Assignment operations act on reference objects. A reference is an updateble
pointer to an object. References are the only data objects which can be side ef-
fected; they can be inserted anywhere an update operation is needed in variables
or data structures.

References are created by the operator ‘ref’, updated by ‘:=’ and dereferenced
by ‘!’. The assignment operator ‘:=’ always returns the trivial value ‘()’ (called
triv) which is the only object of the trivial type ‘.’ (also called triv).

- let a = ref 3;

> a = (ref 3) : int ref

- a:=5;

() : .

- !a;

5 : int

When several side-effecting operations have to be executed in sequence, it is
useful to use sequencing ‘(e1; ... ; en)’ (the parenthesis are needed), which
evaluates e1, . . ., en in turn and returns the value of en.

- (a:=!a+1; a:=!a/2; !a);

3 : int

1.6 Iteration

The construct ‘if e1 then e2 elseloop e3’ is the same as ‘if e1 then e2 else e3’
in the true case; when e1 evaluates to false, e3 is evaluated and control loops
back to the front of the construct again. As an illustration here is an itera-
tive definition of ‘fact’ which uses two local assignable variables: ‘count’ and
‘result’ (note that the prompt ‘- ’ changes to ‘= ’ when an expression spans
several lines).

5

- let fact n =

= let count = ref n and result = ref 1

= in if !count=0

= then !result

= elseloop (result := !count * !result;

= count := !count-1);

> fact = : int -> int

- fact 4;

24 : int

The ‘then’ in ‘if e1 then e2 else e3’ may be replaced by ‘thenloop’ to
cause iteration when e1 evaluates to true. Thus ‘if e1 thenloop e2 else e3’
is equivalent to ‘if not(e1) then e3 elseloop e2’. The conditional/loop
construct can have a number of conditions, each preceded by ‘if’; the expression
guarded by each condition may be preceded by ‘then’, or by ‘thenloop’ when
the whole construct is to be reevaluated after evaluating the guarded expression:

- let gcd(x,y) =

= let x,y = ref x, ref y

= in if !x>!y thenloop x:=!x-!y

= if !x<!y thenloop y:=!y-!x

= else !x;

> gcd = : (int # int) -> int

- gcd(12,20);

4 : int

The ‘else’ branch must always be present in normal conditionals and in the
iterative forms.

1.7 Lists

If e1, . . ., en all have type ty then the ML expression ‘[e1;...;en]’ has type
‘ty list’. The standard functions on lists are ‘hd’ (head), ‘tl’ (tail), ‘null’
(which tests whether a list is empty - i.e. is equal to ‘[]’ (nil)), and the infixed
operators ‘::’ (cons) and ‘@’ (append, or concatenation).

6

- let m = [1;2;(2+1);4];

> m = [1;2;3;4] : int list

- hd m, tl m;

(1,[2;3;4]) : int # (int list)

- null m, null [];

(false,true) : bool # bool

- 0::m;

[0;1;2;3;4] : int list

- [1;2] @ [3;4;5;6];

[1;2;3;4;5;6] : int list

- [1;true;2];

Type Clash in: [1;true;2]

Looking for: int

I have found: bool

All the members of a list must have the same type (although this type could be
a sum, or disjoint union, type - see 2.4).

1.8 Tokens

A sequence of characters in token quotes (‘) is a token.

- ‘this is a token‘;

‘this is a token‘ : tok

- "this is a token list";

"this is a token list" : tok list

- it = ("this is a" @ [‘token‘;‘list‘]);

true : bool

The expression "tok1 tok2 ... tokn" is an alternative syntax for
[‘tok1‘; ‘tok2‘; ... ;‘tokn‘].

1.9 Polymorphism

The list processing functions ‘hd’, ‘tl’ etc can be used on all types of lists.

- hd [1;2;3];

1 : int

- hd [true;false;true];

true : bool

- hd "this is a token list";

‘this‘ : tok

Thus ‘hd’ has more than one type, for example above it is used with types
‘(int list) -> int’, ‘(bool list) -> bool’ and ‘(tok list) -> tok’. In
fact if ty is any type then ‘hd’ has the type ‘(ty list) -> ty’. Functions, like
‘hd’, with many types are called polymorphic, and ML uses type variables ‘*a’,
‘*b’, ‘*1’, ‘*2’, ‘*’, ‘**’, ‘***’, etc. to represent their types.

7

- hd;

: (*a list) -> *a

- let rec map f l =

= if null l then []

= else f(hd l)::map f (tl l);

> map = : (*a -> *b) -> ((*a list) -> (*b list))

- map fact [1;2;3;4];

[1; 2; 6; 24] : int list

map takes a function f (with argument type *a and result type *b), and a list
l (of elements of type *a), and returns the list obtained by applying f to each
element of l (which is a list of elements of type *b). map can be used at any
instance of its type: above, both *a and *b were instantiated to int; below, *a
is instantiated to (int list) and *b to bool. Notice that the instance need
not be specified; it is determined by the typechecker.

- map null [[1;2]; []; [3]; []];

[false; true; false; true] : bool list

1.10 Lambda-expressions

The expression ‘\x.e’ evaluates to a function with formal parameter x and body
e. Thus ‘let f x = e’ is equivalent to ‘let f = \x.e’. Similarly ‘let f (x,y) z = e’
is equivalent to ‘let f = \(x,y).\z.e’. Repeated \’s, as in ‘\(x,y).\z.e’,
may be abbreviated by ‘\(x,y)z.e’. The character ‘\’ is our representation
of lambda, and expressions like ‘\x.e’ and ‘\(x,y)z.e’ are called lambda-
expressions.

- \x.x+1;

\ : int -> int

- it 3;

4 : int

- map (\x.x*x) [1;2;3;4];

[1;4;9;16] : int list

- let doubleup = map (\x.x@x);

> doubleup = \ : ((*a list) list) -> ((*a list) list)

- doubleup ["a b";"c"];

["a b a b";"c c"] : (tok list) list

- doubleup [[1;2];[3;4;5]];

[[1;2;1;2];[3;4;5;3;4;5]] : (int list) list

1.11 Failure

Some standard functions fail at run-time on certain arguments, yielding a token
(which is usually the function name) to identify the sort of failure. A failure
with token ‘t‘ may also be generated explicitly by evaluating the expression
‘failwith ‘t‘’ (or more generally ‘failwith e’ where e has type tok).

8

- hd(tl[2]);

Failure: hd

- 1/0;

Failure: /

- (1/0)+1000;

Failure: /

- failwith (hd "this is a token list");

Failure: this

A failure can be trapped by ‘?’. The value of the expression ‘e1?e2’ is that of
e1, unless e1 causes a failure, in which case it is the value of e2.

- hd(tl[2]) ? 0;

0 : int

- (1/0)?1000;

1000 : int

- let half n =

= if n=0 then failwith ‘zero‘

= else let m=n/2

= in if n=2*m then m else failwith‘odd‘;

> half = \ : int -> int

The function half only succeeds on non-zero even numbers; on 0 it fails with
‘zero‘, and on odd numbers it fails with ‘odd‘.

- half 4;

2 : int

- half 0;

Failure: zero

- half 3;

Failure: odd

- half 3 ? 1000;

1000 : int

Failures may be trapped selectively (on token) by ‘??’; if e1 fails with token
‘t‘, then the value of e1 ?? "t1 ... tn" e2 is the value of e2 if t is one of
t1, . . ., tn, otherwise the expression still fails with ‘t‘.

- half 0 ?? "zero plonk" 1000;

1000 : int

- half 1 ?? "zero plonk" 1000;

Failure: odd

One may add several ‘??’ traps to an expression, and one may add a ‘?’ trap at
the end as a catchall.

9

- half 1

= ?? "zero" 1000

= ?? "odd" 2000;

2000 : int

- hd(tl[half(4)])

= ?? "zero" 1000

= ?? "odd" 2000

= ? 3000;

3000 : int

1.12 Defined Types

Types can be given names:

- let type intpair = int # int;

> type intpair = int # int

- let p = 12,20;

> p = (12,20) : int # int

- p : intpair;

(12,20) : intpair

The new name is simply an abbreviation; for example, ‘intpair’ and ‘int # int’
are completely equivalent. The system may use any of these equivalent type
names when printing types, but tries to maintain the names which have been
explicitely forced by ‘:’.

1.13 Abstract Types

New types (rather than mere abbreviations) can also be defined. For example,
to define a type ‘time’ we could do:

- let type time <=> int # int

= with maketime(hrs,mins) =

= if hrs<0 Or 23<hrs Or mins<0 Or 59<mins

= then fail

= else abstime(hrs,mins)

= and hours t = fst(reptime t)

= and minutes t = snd(reptime t);

> type time = -

| maketime = \ : (int # int) -> time

| hours = \ : time -> int

| minutes = \ : time -> int

This declaration defines an abstract (i.e. new) type ‘time’ together with three
primitive functions: ‘maketime’, ‘hours’ and ‘minutes’. In general an abstract
type declaration has the form ‘type ty <=> ty1 with d’ where d is a dec-
laration, i.e. the kind of phrase that can follow ‘let’. Such a declaration
introduces a new type ty which is represented by ty1. Only within d can one

10

use the (automatically declared) functions absty (of type ty’->ty) and repty
(of type ty->ty’), which map between a type and its representation. In the
example above ‘abstime’ and ‘reptime’ are only available in the definitions of
‘maketime’, ‘hours’ and ‘minutes’; these latter three functions, on the other
hand, are defined throughout the scope of the declaration. Thus an abstract
type declaration simultaneously declares a new type together with primitive
functions for the type. The representations of the type (i.e. ty’), and of the
primitives (i.e. the right hand sides of the definitions in b), are not accessible
outside the with-part of the declaration.

- let t = maketime(8,30);

> t = - : time

- hours t, minutes t;

(8,30) : int # int

Notice that values of an abstract type are printed as ‘-’.

When interacting with the system, it is useful to be able to define abstract types
incrementally in order to make experiments with them. This can be achieved
by an open ended ‘<=>’ declaration, where the ‘with’ part is omitted.

- let type time <=> int # int;

> type time = -

| abstime = \ : (int # int) -> time

| reptime = \ : time -> (int # int)

Now ‘abstime’ and ‘reptime’ are available at the top level and can be used to
define ‘maketime’, ‘hours’ and ‘minutes’ as before.

The ‘with’ construct is not a special syntax for abstract types: it is an envi-
ronment operator which behaves like ‘ins’ on values (making ‘abstime’ and
‘reptime’ private) and like ‘enc’ on types (making ‘time’ available). Hence ab-
stract types are obtained from the interaction of two orthogonal features: the
isomorphism type constructor ‘<=>’ and the environment operators.

1.14 Type Operators

Both ‘list’ and ‘#’ are examples of type operators; ‘list’ has one argument
(hence ‘*a list’) whereas ‘#’ has two (hence ‘*a # *b’). Each type opera-
tor has various primitive operations associated with it, for example ‘list’ has
‘null’, ‘hd’, ‘tl’,... etc, and ‘#’ has ‘fst’, ‘snd’ and the infix ‘,’.

- let z = it;

> z = 8,30 : int # int

- fst z;

8 : int

- snd z;

30 : int

11

Another standard operator of two arguments is ‘+’; ‘*a + *b’ is the disjoint
union of types *a and *b, and associated with it are the following primitives:

isl : (*a + *b) -> bool -- tests membership of left summand

inl : *a -> (*a + *b) -- injects into left summand

inr : *a -> (*b + *a) -- injects into right summand

outl : (*a + *b) -> *a -- projects out of left summand

outr : (*a + *b) -> *b -- projects out of right summand

These are illustrated by:

- let x = inl 1

= and y = inr 2;

> x = inl 1 : int + *a

| y = inr 2 : *b + int

- isl x;

true : bool

- isl y;

false : bool

- outl x;

1 : int

- outl y;

Failure: outl

- outr x;

Failure: outr

- outr y;

2 : int

The abstract type ‘time’ defined above can be thought of as a type operator with
no arguments (i.e. a nullary operator); its primitives are ‘maketime’, ‘hours’
and ‘minutes’. The ‘type...<=>...with...’ construct may also be used to
define non-nullary type operators (with ‘rec type’ in place of ‘type’ if these
are recursive). For example trees analogous to LISP S-expressions could be
defined by:

- let rec type * sexp <=> * + (* sexp) # (* sexp)

= with cons(s1,s2) = abssexp(inr(s1,s2))

= and car s = fst(outr(repsexp s))

= and cdr s = snd(outr(repsexp s))

= and atom s = isl(repsexp s)

= and makeatom a = abssexp(inl a);

> type *a sexp = -

| cons = \ : (*a sexp) # (*a sexp) -> *a sexp

| car = \ : *b sexp -> *b sexp

| cdr = \ : *c sexp -> *c sexp

| atom = \ : *d sexp -> bool

| makeatom = \ : *e -> *e sexp

Exercise: introduce references in the above definition of sexp, so that the LISP
operations ‘replaca’ and ‘replacd’ can be defined.

12

Exercise: modify the definition of sexp to obtain lazy S-expressions. (Hints: use
functional objects to implement suspensions which prevent early evaluation, and
use references to ensure that suspensions are evaluated at most once.)

1.15 Records

A record is very similar to a tuple ‘(x1,...,xn)’ where each xi is given a dif-
ferent label; then the order of the xi is not important because every component
can be identified by its label.

- let r = (|a=3; c="1"; b=true|);

> r = (|a=3; b=true; c="1"|) : (|a:int; b:bool; c:tok list|)

- r = (|c="1"; b=true; a=3|);

true : bool

The special brackets ‘(|’ and ‘|)’ are used to delimit records and record types.
Note how the labels ‘a’, ‘b’ and ‘c’ are rearranged in alphabetical order by the
system.

The only operation defined on records is field selection ‘r.a’ where a is a label
and r has a record type.

- r.a;

3 : int

- (|a=r.a; b=r.b|);

(|a=3; b=true|) : (|a:int; b:bool|)

Labels are not identifiers and cannot be computed. In the expression ‘\a. r.a’
the first ‘a’ is a variable while the second ‘a’ is a label; it is not possible to
parameterize with respect to a label. Also, labels are not tokens.

- \a. r.a;

\ : *a -> int

- it ();

3 : int

A record field of the form ‘a=a’ (where the first ‘a’ is a label and the second
one is a variable) can be abbreviated to ‘a’; this is useful! because often one
uses variables having the same name as record fields for mnemonic reasons. The
same applies to record types.

- let !type R = (|bool; int|)!

= and f(x,y) = (|x; y|);

> type R = (|bool:bool; int:int|)

| f = \ : (*a # *b) -> (|x:*a; y:*b|)

The exact type of every record must be known; the expression ‘\r. r.a’ will
fail to typecheck in isolation because not all fields of r are know (we only know
it has an a field). However ‘\r. r.a’ is accepted when the context provides
enough information about r.

13

- \r. r.a;

Unresolvable Record Selection of type: (|a:*a|)

Field selector is: a

- (\r. r.a) r;

3 : int

1.16 Variants

Variants and records can be considered as complementary concepts; a record
type is a labelled product of types, while a variant type is a labelled sum (disjoint
union) of types. An object of a variant type can belong to one of several types;
these different cases are distinguished by the label attached to every variant
object. Hence testing the label of a variant object is like testing its type out a
finite set of possibilities.

- let type OneOfTwo = [|int: int; bool: bool|];

> type OneOfTwo = [|bool:bool; int:int|]

The special brackets ‘[|’ and ‘|]’ are used to delimit variants and variant types.
Again, the labels ‘bool’ and ‘int’ are rearranged in alphabetical order (they
should not be confused with the types ‘bool’ and ‘int’ which follow the ‘:’).

Two basic operations are defined on variants: ‘is’ tests the label of a variant
object, and ‘as’ returns the object contained in the variant.

- let v = [|int=3|] : OneOfTwo;

> v = [|int=3|] : OneOfTwo

- v is int, v is bool;

(true,false) : bool # bool

- v as int;

3 : int

- v as bool;

Failure: as

We must specify ‘: OneOfTwo’ in the definition of v because v might also belong
to some different variant containing a case ‘int: int’. This type specification
is not needed in general if the context gives enough information about v. Here
is what happens if we forget to specify the type:

- [|int=3|];

Unresolvable Variant Type: [|int:int|]

A very useful abbreviation concerning varian types is the following: whenever we
have a variant type with a field ‘a: .’ we can abbreviate that field specification
to ‘a’, and whenever we have a variant object ‘[|a=()|]’ we can abbreviate it
to ‘[|a|]’.

14

- let type color = [|red; orange; yellow|];

= and fruit = [|apple; orange; banana|];

> type color = [|orange; red; yellow|]

| type fruit = [|apple; banana; orange|]

- let fruitcolor (fruit: fruit): color =

= case fruit of

= [|apple. [|red|];

= banana. [|yellow|];

= orange. [|orange|]

= |];

> fruitcolor = \ : fruit -> color

The above ‘case’ construct is a convenient form of saying:

if fruit is apple then [|red|]

else if fruit is banana then [|yellow|]

else if fruit is orange then [|orange|]

else fail

(‘else fail’ is never executed; a compile-time error message is given if some
case is missing).

Note that ‘[|orange|]’ is both a color and a fruit; it is possible to disam-
biguate the occurrence above because of the type declarations in the definition
of fruitcolor.

1.17 Varstructs

Structured variables (varstructs) can appear wherever a formal parameter is
expected; we have already seen the simple case of tuples:

- let a,b,c = 1,2,3;

> a = 1 : int

| b = 2 : int

| c = 3 : int

All the variables in a varstruct must be distinct, so that no ambiguites can arise.

Lists can also be used in varstructs, and they can be nested with tuples and
with all the other kinds of varstructs:

15

- let [a;b] = [1;2];

> a = 1 : int

| b = 2 : int

- let a::b = [1;2;3];

> a = 1 : int

| b = [2;3] : int list

- let a,[();b,c] = 1,[2,3;4,5];

| a = 1 : int

| b = 4 : int

| c = 5 : int

- let [a;b] = [3];

Failure: varstruct

List varstructs may fail when the number of elements in a list is not the expected
one. The varstrtuct ‘()’ can be used to ignore parts of a structure.

Record and variant varstructs are also allowed.

- let (|a=x; b=[|int=y|]|) = (|a=3; b=[|int=4|]:OneOfTwo|);

> x = 3 : int

| y = 4 : int

Varstructs can also appear as formal parameters of functions and lambda-
expressions, and in case statements. Note that record varstructs in functions
allow one to pass arguments in random order by associating them to labels; this
feature is called ’call by keyword’ in some languages.

- let f [a;b,c] = a,b+c;

> f = \ : ((int # int) list) -> ((int # int) # int)

- (\(|a; b|). a,b) (|b=3; a=4|);

(4,3) : int # int

- let {type IntOrPair = [|int:int; pair:(|x:int; y:int|)|]}

= enc total (a: IntOrPair): int =

= case a of

= [|int=z. z;

= pair=(|x; y|). x+y

= |]

= in total [|pair= (|x=3; y=4|)|];

7 : int

The varstruct ‘(|x; y|)’ above is an abbreviation for ‘(|x=x; y=y|)’, just like
in record expressions.

16

2 Bibliography

References

[1] M. J. Gordon, A. J. Milner, and C. P. Wadsworth. Edinburgh LCF, vol-
ume 78 of LNCS. Springer-Verlag, New York, 1979.

17

