Locations as first class objects in ML

We describe an extension to the ML type system which (we conjecture)
permits the type-secure manipulation of references (i.e. pointers).
Before proceeding, note that it's not clear that the unrestricted use
of references should be allowed at all (one might argue that our
Proposal is to letref's as goto's are to while's). Note also that I
havn't managed to prove the extended type system secure; indeed I
?hink it's quite possible that it isn't. One purpose of this document
1s to challenge people to find the holes. My overall goal was to
enable polymorphic assignable data-structures (e.g. arrays or lists
permitting RPLACA) to be defined as abstract types . To achieve this,
together with type security, I've had to introduce a rather ad-hoc
notion of "weak polymorphism". This seems to give sufficient
polymorphism for the simple examples I've considered, but may turn out
to be too constraining. I hope something both more elegant, and more
powerful, can eventually be devised.

Weak Polymorphism

We introduce a new kind of type variables: *, ** = *x*x . these
will be called weak variables to distinguish™ them from ¥, **, *x*
which we'll call full variables. We require that each argument
position of each type operator be specified as either weak or full.

All the argument positions of the standard ML operators are full,
however we introduce a new unary operator "ref" whose only argument
position is weak. Values of type "ty ref" are references to (i.e.
locations holding) values of type ty. To maintain type security each
reference must hold values of a fixed monotype - intuitively weak
variables stand for undetermined monotypes. To manipulate references
we use the following prinitives:

newref : * -> * ref
$:=:?zef#:—>.
cont : ¥ ref ->7*

The generic types of these are as shown, their meanings are as
follows:

"newref e": e is evaluated and a New location containing e's value is
returned.

"e:=e:": e and e' are evaluated in that order; e must evaluate to a
location. The evaluation of "e:=e'" has the side effect of storing
the value of e' in the value of e; empty is returned.

"cont E": e is evaluated and its value must be a 1location; the
contents of this location is returned.

Note suggesting research topic for Damas, circa 19807

Typechecking proceeds as in standard ML, together with the following
constraints:

1. Types containing full variables may never be substituted for
weak variables (any types can be substituted for Ffull
variables).

2. For "e e'" to be well-typed, e must have type ty'->ty, e
must have type ty' and all weak variables in ty' must occur
in the types of enclosing \-bound varstructs.

3. The ith argument position of a type operator op defined by
"abs{rec}type (x1,...,xn)op = ..." is defined to be weak if
xi is weak, otherwise it is full.

4. In a type "(tyl,...,tyn)op", if the ith argument position of
op is weak then tyi must not contain any full type variables.

To help motivate the first two constraints consider:

let £ = \x.let r = newref x in (\z.r:=z),k\().cont r)
f will be ascribed type: * -> (* -> .) # (. =-> *). Now for each
application "f e" not occuring inside a \, e must have a definate
monotype; thus evaluating "let store,fetch = £([])" at top level is

prohibited. However both "let store,fetch = f([]:form)" and
"let store,fetch = £([]:thm)" would be allowed.

The third and fourth constraint govern the creation and use of new
type operators, for example consider:

abstype * array = (* list) # int # int
with newarray(1l,nl,n2) =
if length 1 = n2-nl+l
then absarray(map newref 1 , nl , n2)
else failwith “newarray’
and select a n =
let 1,nl1,n2 = reparray a
in if n<nl or n>n2
then failwith ‘select’
else el(n-nl+l1)1
whererec el n 1 = n=1 => hd 1 | el(n-1) (tl 1)

This defines a new unary type operator “"array", whose only argument is
weak, and whose primitives have generic types:

newarray : * list # int # int -> * array
select : * array -> int -> *

To create a new array with lower bound nl, upper bound n2, and initial
contents vl,...,vn (where n=n2-nl+l) one evaluates
"newarray([vl;...;vn],nl,n2)". To get the value stored at the ith
component of a one evaluates "cont(select a i)"; to change the value
to v one evaluates "select a i := v".

David MacQueen
Note suggesting research topic for Damas, circa 1980?

