9.

9/35

Robin Milner

University of Edinburgh
Introduction
1.1 How this proposal evolved; 1.2 Design principles; 1.3 An example.
The bare language

2.1 Discussion; 2.2 Reserved words; 2.3 Special constants; 2.4 Identifiers;
2.5 Comments; 2.6 Lexical analysis; 2.7 Delimiters; 2.8 The bare syntax.

Evaluation

3.1 Enviromments and values; 3.2 Enviromment manipulation;

3.3 Matching patterns; 3.4 Applying a match; 3.5 Evaluation of expressions;
3.6 Evaluation of value bindings; 3.7 Evaluation of type and datatype
bindings; 3.8 Evaluation of exception bindings; 3.9 Evaluation of
declarations; 3.10 Evaluation of programs.

Directives

Standard bindings

5.1 Standard type constructors; 5.2 Standard functions and constants;
5.3 Standard exceptions.

Standard derived forms

6.1 Expressions and patterns; 6.2 Bindingé ana qeclarations.
References and equality

7.1 References and assignment; 7.2 Equality.

Exceptions

8.1 Discussion; 8.2 Derived forms; 8.3 An example;
8.4 Some pathological examples.

Type-checking

10. Syntactic restrictions

11. Relation between the Core language and Modules

12. Conclusion

REFERENCES

APPENDICES: 1. Syntax: Expressions ana Patterns

2. Syntax: Types, Bindings and Declarations
3. Predeclared Variables and Constructors

1. Introduction
1.1 How this proposal evolved

ML is a strongly typed functional programming language, which has been used
by a number of people for serious work during the last few years [1]. At the
same time HOPE, designed by Rod Burstall and his group, has been similariy used
[2]. The original DEC-10 ML was incomplete in some ways, redundant in others.
Some of these inadequacies were remedied by Cardelli in his VAX version; others
could be put right by importing ideas from HOPE.

In April '83, prompted by Bernard Sufrin, I wrote a tentative proposal to
consolidate ML, and while doing so became convinced that this consolidation was
possible while still keeping its character. The main strengthening came from
generalising the "varstructs" of ML - the patterns of formal parametvers - to the
patterns of HOPE, which are extendible by the declaration of new data types.
Many people immediately discussed the initial proposal. It was extremely lucky
that we managed to have several separate discussions, in large and small groups,
in the few succeeding months; we could not have chosen a better time to do the
Jjob. Also, Luca Cardelli very generously offered to freeze his detailed drart
ML manual [3] until this proposal was worked out.

The proposal went through a second draft, on which there were further
discussions. The results of these discussions were of two kinds. First, it
became clear that two areas were still unsettled: Input/Outpuc, and Modules for
separate compilation. Second, many points were brought up about the remaining
core of the language, and these were almost all questions of fine detail. The
conclusion was rather clear; it was obviously better to present at first a
definition of a Core language without the two unsettled areas. This course was
further justified by the fact that the Core language appeared to be almost
completely unaffected by the choice of Input/Outpuc primitives and of separate
compilation constructs. Also, there were already strong proposals, from
Cardelli and MacQueen respectively, for these two vital facilities.

A third draft [4] of the Core language was discussed in detail in a design
meeting at Edinburgh in June '84, attended by nine of the people mentioned
below; several points were ironed out, and the outcome was reported in [5]. The
meeting also looked in detail at the MacQueen Modules proposal ana the Cardelli
Input/Output proposal, and agreed on their essentials.

During the ensuing year, having an increasingly firm design of MacQueen's
Modules, we were able to assess the language as a whole. The Modules proposal,
which is the most adventurous part of the language, reachea a state of precise
definition. At a final design meeting, which was held in Edinburgh in May 1985
and attended by fifteen people (including twelve named below), the Modules
design was discussed and warmly accepted; it appears as [6]. We also took
advantage of the meeting to tidy up the Core Language, and to settle finally the
primitives for Input/Output. The final Core language design is presented in
this document; the Input/Output facilities are aetailed in [7].

The main contributors to Standard ML, through their work on ML and on HOPE,
are:

Rod Burstall, Luca Cardelli, Michael Gordon, David MacQueen,
Robin Milner, Lockwood Morris, Malcolm Newey, Christopher Wadsworth.

The language also owes much to criticisms and suggestions from many other
people: Guy Cousineau, Bob Harper, Jim Hook, Gerard Huet, Dave Matthews, Robert

2

Milne, Kevin Mitchell, Brian Monahan, Peter Mosses, Alan Mycroft, Larry Paulson,
David Park, David Rydeheard, Don Sannella, David Scnmidt, John Scott, Stefan
Sokolowski, Bernard Sufrin, Philip Wadler. Most of them have expressed strong
support for the design; any inadequacies which remain in the Core Language are
my fault, but I have tried to represent the consensus.

1.2 Design principles

The proposed ML is not intended to be the functionai language. There are too
many degrees of freedom for such a thing to exist: lazy or eager evaluation,
presence or absence of reterences and assignment, whether and how to handle
exceptions, types-as-parameters or polymorphic type-checking, and so on. Nor is
the language or its implementation meant to be a commercial product. It aims to
be a means for propagating the craft of functional programming and a venicle for
further research into the design of functional languages.

The over-riding design principle is to restrict the Core language to ideas
which are simple and well-understood, and also well-tried - either in previous
versions of ML or in other functional languages (the main other source being
HOPE, mainly for its argument-matching constructcs). One effect of this
principle has been the omission of polymorphic references and assignment. There
is indeed an elegant and sound scheme for polymorphic assignment worked out by
Luis Damas, and described in his Edinburgh PhD thesis; however, it may be
susceptible to improvement with further study. Meanwhile there is the advantage
of simplicity in keeping to the well-understood polymorpnic type-checking
discipline which derives from Curry's Combinatory Logic via Hindley.

A second design principle is to generalise well-tried ideas where the
generalisation is apparently natural. This has been applied in generalising ML
"varstructs" to HOPE patterns, in broadening the structure of declarations
(following Cardelli's declaration connectives which go back to Robert Milne's
Ph.D. Thesis) and in allowing exceptions which carry values of arbitrary
polymorphic type. It should be pointed out here that a difficult decision had
to be made concerning HOPE's treatment of data types - present only in embryonic
form in the original ML - and the labelled records and variants which Cardelli
introduced in his VAX version. Each treatment has advantages which the other
lacks; each is well-rounded in its own terms. Though a combination of these
features was seen to be possible, it seemed at first (to me, but some
disagreed!) to entail too rich a language. Thus the HOPE treatment alone was
adopted in [5]. However, at the design meeting of June '84 it was agreed to
experiment with at least two different ways of adding labelled records to the
Core as a smooth extension. The outcome - decided at the May '85 meeting - is
the inclusion of a form of labelled records (but not variants) nearly identical
to Cardelli's, and its marriage with the HOPE constructions now appears
harmonious.

A third principle is to specify the language completely, so that programs
will port between correct implementations with minimum fuss. This entails,
first, precise concrete syntax (abstract syntax is in some senses more important
- but we do not all have structure editors yet, and humans still communicate
among themselves in concrete syntax!); seconu, it entails exact evaluation rules
(e.g. we must specify the order of evaluation of two expressions, one applied to
the other, because of side-effects and the exception mechanism). At a level
which is not fully formal, this document and its sister reports on Modules and
on Input/Output constitute a complete description; however, we intend to augment
them both with a formal definition and with tutorial material.

1.3 An_example

The following declaration illustrates some constructs of the Core language.
A longer expository paper should contain many more examples; here, we hope only
to draw attention to some of the less famitiar ideas.

The example sets up the abstract type 'a diectionary , in wnich each entry
associates an item (of arbitrary type 'a) with a key (an integer). Besides the
null dictionary, the operations provided are for looking up a key, and for
adding a new entry which overrides any old entry with the same key. A natural
representation is by a list of key-item pairs, ordered by key.

abstype 'a dictionary =

dict of (int # 'a)list (* dict is the datatype *)
(* constructor, available *)
with (* only in the with part. %)

val nulldiet = diet nil
(* The function lookup may ¥)

exception lookup : unit (% raise an exception. %)

fun lookup (key:int) (* 'a is the result type. %)
(dict entrylist :'a dietionary) :'a =

let fun search nil = raise lookup (# An auxiliary clausal *)

| search ((k,item)::entries) = (# function declaration. %)

1f key=k then item
else if key<k then raise lookup
else search entries

in search entrylist

end
fun enter (newentry as (key, item:'a)) (* A layered pattern. *)
(dict entrylist) :'a diectionary =
let fun update nil = [newentry] (* A singleton list. *)

| update ((entry as (k,_))::entries) =
if key=k then newentry::entries
else if key<k then newentry::entry::entries
else entry::update entries
in dict(update entrylist)
end
end (* ena of dictionary ¥)

After the declaration is evaluated, five identifier bindings are reported, and
recorded in the top-level enviromment. They are the type binding of dictionary,
the exception binding of lookup, and three typed value bindings:

nulldiet : 'a dictionary

lookup : int <> 'a dictionary -> 'a

enter : int # 'a -> 'a dictionary -> 'a dictionary
The layered pattern construct "ag" was first introduced in HOPE, and yields both
brevity and efficiency. The discerning reader may be able to find one further
use for it in the declaration.

2. TIhe bare language
2.1 Discussion

It is convenient to present the language first in a bare form, containing
enough on which to base the semantic description given in Section 3. Things
omitted from the bare language description are:

(1) Derived syntactic forms, whose meaning derives from their equivalent
forms in the bare language (Section 6);

(2) Directives for introducing infix identifier status (Section U4);
(3) Standard bindings (Section 5);

(4) References and equality (Section 7);

(5) Type-checking (Section 9).

The principal syntactic objects are expressions and declarations. The
composite expression forms are application, record formation, raising and
handling exceptions, local declaration (using let) and function abstraction.

Another important syntactic class is the class of patterns; these are
essentially expressions containing only variables and value constructors, and
are used to create value bindings. Declarations may declare value variables
(using value bindings), types with associated constructors or operations (using
type and datatype bindings), and exceptions (using exception bindings). Apart
from this, one declaration may be local to another (using local), and a sequence
of declarations is allowed as a single declaration.

An ML program is a series of declarations, called top-level declarations,
dect ; __ decn ;

each terminated by a semicolon (where each deci is not itself of the form
"dec ; dec'™). In evaluating a program, the bindings created by decl are
reported before dec2 is evaluated, and so on. In the complete language, an
expression occurring in place of any deci is an abbreviated form (see Section
6.2) for a declaration binding the expression value to the variable "it"; such
expressions are called ftop-level expressions.

The bare syntax is in Section 2.8 below; first we consider lexical matters.

2.2 Reserved words

The following are the reserved words used in the Core language. They may not
(except =) be used as identifiers. In this document the alphabetic reserved
words are always underlined.

abstype and andalso as case do datatype

else end exception fn fun handle if in
infix dinfixr 1let 1local nonfix of op open
orelse raise rec then type val with while

¢y o1 4¢3y, 5 . b= = _2

2.3 Special constants

An integer constant is any non-empty sequence of digits, possibly preceded by
a negation symbol (~).

A real constant is an integer constant, possibly followed by a point (.) ana
one or more digits, possibly followed by an exponent symbol (E) and an integer
constant; at least one of the optional parts must occur, hence no integer
constant is a real constant. Examples: 0.7 , ~3.32E5 , 3E~7 . Non-examples:
23, .3, 4.85 , 1E2.0 .

A string constant is a sequence, between quotes ("), of zero or more
printable characters, spaces or escape sequences. Each escape sequence is
introduced by the escape character \, and stands for a character sequence. The
allowed escape sequences are as follows (all other uses of \ being incorrect):

\n A single character interpreted by the system as enu-of-line.

\t Tab.

\"e The control character c¢, for any appropriate c.

\ddd The single character with ASCII code ddd (3 decimal digits).

\!l L

N\ \

\f_f\ This sequence is ignored, where f__f stands for a sequence of one

or more formatting characters (a subset of the non-printable
characters including at least space, tab, newline, formfeed).
This allows one to write long strings on more than one line, by
writing \ at the end of one line ana at the start of the next.

2.4 Identifiers

Identifiers are used to stand for six different syntax classes which, if we
had a large enough character set, would be disjoint:

value variables (var) type variables (tyvar)
value constructors (con) type constructors (tycon)
exception names (exn) record labels (1ab)

An identifier is either alphanumeric: any sequence of letters, digits, primes
(') and underbars (_) starting with a letter or prime, or symbolic: any sequence
of the following symbols

! ¢ & $ + -/ ¢+ < = > 2 @\~ > ~ | =
In either case, however, reserved words are excluded. This means tnat for
example ? and | are not identifiers, but ?? and |=| are identifiers. The only
exception to this rule is that the symbol =, which is a reserved word, is also

allowed as an identifier to stand for the equality predicate (see Section 7.2).
The identifier = may not be rebound; this precludes any syntactic ambiguity.

A type variable (tyvar) may be any alphanumeric identifier starting with a
prime. The other five classes (var, con, exn, tycon, lab) are represented by
identifiers not starting with a prime; the class lab is also extended to
include the numeric labels #1, #2, #3, ___ . :

Type variables are therefore disjoint from the other five classes.
Otherwise, the syntax class of an occurrence of identifier id is determined
thus:

(1) At the start of a component in a record type, record pattern or record
expression, id is a record label.

(2) Elsewhere in types id is a type constructor, and must be within the scope
of the type binding or datatype binding which introduced it.

(3) Following exception, raise or handle, or in the context "exception exn = id",
id is an exception name.

(4) Elsewhere, id is a value constructor if it occurs in the scope of a datatype
binding which introduced it as such, otherwise it is a value variable.

It follows from (4) that no declaration must make a hole in the scope of a value
constructor by introducing the same identifier as a variable; this is because,
in the scope of the declaration which introduces id as a value constructor, any
occurrence of id in a pattern is interpreted as the constructor and not as the
binding occurrence of a new variable.

The syntax-classes var, con, tycon and exn all depena on which bindings are
in force, but only the classes var and con are necessarily disjoint. The
context determines (as described above) to which class each identifier
occurrence belongs.

In the Core language, an identifier may be given infix status by the infix or
Anfixr directive; this status only pertains to its use as a var or a con. If id
has infix status, then "exp1 id exp2" (resp. "patl1 id pat2") may occur wherever
the application "id(expl,exp2)" (resp. "id(pat1l,pat2)") would otherwise occur.
On the other hand, non-infixed occurrences of id must be prerixed by the keyword
"op", Infix status is cancelled by the nonfix directive. (Note: the tuple
expression "(exp1,exp2)" is a derived form of the numerically labelled record
expression "{#1=expl,#2=exp2}", and a similar derived form exists for
numerically labelled record patterns. See Section 6.1.)

2.5 Comments

A comment is any character sequence within comment brackets (% #) in which
comment brackets are properly nested. An ummatched comment bracket should be
detected by the compiler.

2.6 Lexical analysis

Each item of lexical analysis is either a reserved word, a numeric label, a
special constant or an identifier; comments and formatting characters separate
items (except within string constants; see Section 2.3) ana are otherwise
ignored. At each stage the longest next item is taken.

As a consequence of this simple approach, spaces or parentheses are needed
sometimes to separate identifiers and reserved words. Two examples are

a:= b or a:=(1!b) but not a:=lb
(assigning contents of b to a)
~ :int=>int or (~):int->int but not ~:int->int

(unary minus qualified by its type)

Rules which allow omission of spaces in such examples would also forbid certain
symbol sequences as identifiers; moreover, such rules are hard to remember. It
seems better to keep a simple scheme and tolerate a few extra spaces or
parentheses.

2.7 Delimiters

Not all constructs have a terminating reserved word; this would be verbose.
But a compromise has been adopted; end terminates any construct which declares

bindings with local scope. This involves only the let, local anda abstype
constructs.

2.8 The bare syntax

The syntax of the bare language is presented in the adjacent table. The
following metasyntactic conventions are adopted:

Conventions
(1) The brackets "<< >>" enclose optional phrases.

(2) Repetition of iterated phrases is represented by " __"; this must not be
confused with "...", a reserved word used in flexible record patterns.

(3) For any syntax class s, we define the syntax class s_seq as follows:

s seq ::= 8
(s1, __ ,8n) (n21)

(4) Alternatives are in order of decreasing precedence.

(5) L (resp. R) means left (resp. right) association.

The syntax of types binds more tightly that that of expressions, so type
constraints should be parenthesized if not followed by a reserved word.

Each iterated construct (e.g. match, handler, ..) extends as far right as
possible; thus parentheses may also be needed around an expression which
terminates with a match, e.g. "fn match", if this occurs within a larger match.

IHE SYNTAX OF THE BARE LANGUAGE

EXPRESSIONS exp

aexp ::=
var (variable)
con (constructor)
{ labl=exp1, __ , (record,n>0)

labn=expn }

(exp)

exp ::=
aexp (ataomie)
exp aexp L(application)
exp : ty L(constraint)

R(handle exec'ns)
(raise exc'n)
(local dec'n)
(function)

exp handle handler
raise exn with exp
let dec in exp end
fn match

match ::=

rulel | __ | rulen (n21)

handler ::
hrulel || __ || hrulen (n21)

hrule ::=
exn with match
? => exp

PATTERNS pat
apat ::=
- (wildecard)
var (variable)
con (constant)

{ labl=patl, __ , (record,n>Q)%#
labn=patn <<, ...>>}

(pat)
pat ::=
apat (atomie)
con apat L(construction)
pat : ty L(constraint)

var<<:ty>> as pat R(layered)

L

JALUE BINDINGS vb

DECLARATIONS dec

dec ::=
yal vb (values)
type tb (types)
datatype db (datatypes)
abstype db (abstract
with dec end datatypes)
exception eb (exceptions)

local dec in dec' end (local dec'n)
dec1<<;>> __ decn<<;>> (sequence,n>0)

PROGRAMS :

dec? ;3 __ decn ;

vb ::=
pat = exp (simple)
vb1 and __ and vbn (multiple,n22)
rec vb (recursive)
IYPE BINDINGS tb
tb ::=
<<Ltyvar_seq>>tycon
= ty (simple)
tb1 and _ and tbn (multiple,n>2)
DATATYPE BINDINGS db
db ::=
{<Ltyvar_seq>>tycon
= constrs (simple)
db1 and ___ and dbn (multiple,n>2)
constrs ::=
coni<<of tyi1>>| __ | conn<<of tyn>>
EXCEPTION BINDINGS eb

eb ::=
exn<<:ty>><< =zexn'>>(simple)
eb1 and __ and ebn (multiple,nd>2)

IYPES ¢ty
ty ::=
tyvar
<<ty_seq>>tycon
{ labt:ty1, __ ,

labn:tyn }

ty => ty!
(ty)

(type variable)
(type constr'n)

(record type,n>0)
R(function type)

1

%% The reserved word "..." is called the record wildeard. If it is absent,
then the pattern will match any record with exactly those components which

are specified;
further components.

if it is present, then the matched record may also contain
If it occurs when n=0, then the preceding comma is

omitted; "{...}" is a pattern which matches any record wnatever.

3. Evaluation
3.1 Environments and Values

Evaluation of phrases takes place in the presence of an ENVIRONMENT ana a
STORE. An ENVIRONMENT E has two components: a value environment VE associating
values to variables and to value constructors, and an exception enviromment EE
associating exceptions to exception names. A STORE S associates values to
references, which are themselves values. (A third component of an enviromment, a
type environment TE, is ignored here since it is relevant only to type-checking
and compilation, not to evaluation.)

A value v is either a constant (a nullary constructor), a construccion (a
constructor with a value), a record, a reference, or a function value. A record
value is a set of label-value pairs, written "{labl=v1, __ ,labn=vn}", in which
the labels are distinct; note that the order of components is immaterial. The
labels labi in a record value must be either all identifiers, or else they must
be the numeric labels #1, #2, __ , #n; the two kinds of label may not be mixed.
A function value f is a partiatr function which, given a value, may return a
value or a packet; it may also change the store as a side-effect.

An exception e, associated to an exception name exn in any exception
environment, is an object drawn from an infinite set (the nature of e is
immaterial, but see Section 3.8). A packet p=(e,v) is an exception e paired
with a value v, called the excepted value. Neitner exceptions nor packets are
values.

Besides possibly changing S (by assignment), evaluation of a phrase returns a
result as follows:

Phrase Result
Expression v or p
Value binding VE or p
Type or datatype binding VE
Exception binding EE
Declaration E or p

For every phrase except a handle expression, whenever its evaluation aemands the
evaluation of an immediate subphrase which returns a packet p as result, no
further evaluation of subphrases occurs and p is also the result of the phrase.
This rule should be remembered while reading the evaluation rules below. In
Presenting the rules, explicit type constraints (:ty) have been ignored since
they have no effect upon evaluation.

3.2 Environment manipulation

We may write <(id1,v1) __ (idn,vn)> for a value enviromment VE (the idi being
distinct). Then VE(idi) denotes vi, <> is the empty value environment, and
VE+VE' means the value enviromment in which the associations of VE' supersede
those of VE. Similarly for exception environments. If E=(VE,EE) and
E'=(VE',EE'), then E+E' means (VE+VE',EE+EE'), E+VE' means E+(VE',<>), etec.
This implies that an identifier may be associated both in VE and in EE without
conflict.

10

3.3 Matching patterns

The matching of a pattern pat to a value v either fails or yields a value
environment. Failure is distinct from returning a packet, but a packet will be
returned when all patterns fail in applying a match to a value (see Section
3.4). 1In the following rules, if any component pattern fails to match then the
whole pattern fails to match.

The following is the effect of matching a pattern pat to a value v, in each
of the cases for pat (with failure if any condition is not satisfied):

- ¢ the empty value enviromment <> is returned.
var ¢ the value environment <(var,v)> is returned.
con<<pat>> : if v = cond<v'>> then pat 1s matched to v', else failure.

var as pat

pat is matched to v returning VE; then <(var,v)>+VE is
returned.

{ labl=pat1, __ , labn=patn, <<, ...>>} :
if v={ labl=vi, __ ,labm=vm } , where m>n if "...%" is
present and m=n otherwise, then pati is matched to vi
returning VEi, for each i; then VE1+ __ +VEn is returned.

3.4 Applying a match

Assume enviromment E. Applying a match "pati=>exp1| __ lpatn=Dexpn" to value
v returns a value or packet as follows. Each pati is matched to v in turn, from
left to right, until one succeeds returning VEi; then expi is evaluated in
E+VEi. If none succeeds, then the packet (ematch,()) is returned, where ematch
is the standard exception bound by predeclaration to the exception name "match".
But matches which may fail are to be detected by the compiler and flagged with a
warning; see Section 10(2).

Thus, for each E, a match denotes a function value.

3.5 Evaluation of expressions

Assume environment E=(VE,EE). Evaluating an expression exp returns a value
or packet as follows, in each of the cases for exp:

var : the value VE(var) is returned.

con : the value VE(con) is returned.

exp aexp : eXxp is evaluated, returning function value f; then
aexp is evaluated, returning value v; then f(v) is
returned.

{ labil=exp1, __ , labn=expn }
the expi are evaluated in sequence, from left to
right, returning vi respectively; then the record
{ lab1=v1, __ , labn=vn } is returnea.

raise exn with exp : exp is evaluated, returning value v; then the

1

packet (e,v) is returned, where e = EE(exn).

exp handle handler : exp is evaluated; if exp returns a value v, then

v is returned; if it returns a packet p = (e,v)

then the handling rules of the handler are scanned

from left to right until a rule is found which

satisfies one of two conditions:

(1) it is of form "exn with match" and e=EE(exn),
in which case match is applied to v;

(2) it is of form "? => exp'", in which case exp'
is evaluated.

If no such hrule is found, then p is returnea.

Jlet dec in exp end : dec is evaluated, returning E'; then exp is
evaluated in E+E'.

£fn match : £ is returned, where f is the function of v gained
by applying match to v in enviromment E.

3.6 Evaluation of value bindings

Assume enviromment E = (VE,EE). Evaluating a value binding vb returns a
value environment VE' or a packet as follows, by cases of vb:

pat = exp ¢ exp is evaluated in E, returning value v; then pat is
matched to v; if this returns VE', then VE' is returned,
and if it fails then the packet (ebind,()) is returned, where
ebind is the standard exception bound by predeclaration to
the exception name "bind".

vbl and ___ and vbn: vbl, _,vbn are evaluated in E from left to right, returning
VE1, ___ ,VEn; then VE1+ __ +VEn is returned.

rec vb ¢ vb is evaluated in E', returning VE', wnere E' = (VE+VE',EE).
Because the values bound by "rec vb" must be funetion values
(see 10(4)), E' is well defined by "tying knots" (Landin).

3.7 Evaluation of type and datatype bindings

The components VE and EE of the current environment do not affect the
evaluation of type bindings or datatype bindings (TE affects their type-checking
and compilation). Evaluation of a type binding just returns the empty value
enviromment <>; the purpose of type bindings in the Core language is merely to
provide an abbreviation for a compound type. Evaluation of a datatype binding
db returns a value enviromnment VE' (it cannot return a packet) as follows, by
cases of db:

<{{tyvar_seg>>tycon = coni<<of ty1>> | _ | conn<<of tyn>> :
the value environment VE' = <(coni,vt), __ ,(conn,vn)> is
returned, where vi is either the constant value con. (if
of tyi™ is absent) or else the function which maps v to
coni(v). Other effects of this datatype binding are deart
with by the compiler or type-checker, not by evaluation.

db1 and __ and dbn : dbi1, _ , dbn are evaluated from left to right, returning
VE1l, __ ,VEn; then VE' = VE1+ __ +VEn is returned.

12

3.8 Evaluation of exception bindings

Assume environment E = (VE,EE). The evaluation of an exception binding eb
returns an exception environment EE' as follows, by cases of eb:

exn << =zexn'>> : EE' = <(exn,e)> is returned, where
(1) if exn' is present then e = EE(exn'); this is
a non-generative exception binding since it merely

re~binds an existing exception to exn;
(2) otherwise e is a previously unused exception; this

is a generative exception binding.

eb1 and ___ and ebn : ebl, __ ,ebn are evaluated in E from left to right,
returning EE1,_,EEn; then EE' = EE1+_ +EEn is returned.

3.9 Evaluation of declarations

Assume enviromment E = (VE,EE). Evaluating a declaration dec returns an
environment E' or a packet as follows, by cases of dec:

yal vb : vb is evaluated, returning VE'; then E! (VE',<>) is returnea.

type tb ¢ E' = (<>,<>) is returned.

datatype db : db is evaluated, returning VE'; then E!

abstype db with dec end :
db is evaluated, returning VE'; then dec is evaluated in E+VE',
returning E'; then E' is returned.

(VE!',<>) is returned.

exception eb : eb is evaluated, returning EE'; then E' = (<>,EE') is returnea.

local dec? in dec2 end :
dec1 is evaluated, returning E1, then dec2 is evaluated in E+E1,
returning E2; then E' = E2 is returned.

dec1<<;>> __ decn<k<;>> :
each deci is evaluated in E+El1+ __ +E(i-1), returning Ei, for i =
1,2, __ ,n; then E' = (<>,<)+E1+ __ +En is returned. Thus when
n=0 the empty enviromment is returned.

Each declaration is defined to return only the new enviromment which it makes,
but the effect of a declaration sequence is to accumulate environments.

3.10 Evaluation of programs

The evaluation of a program "dec? ; __ decn ;" takes place in the initial
presence of the standard top-level environment ENVO containing all the standard
bindings (see Section 5). For i>0 the top-level enviromment ENVi, present after
the evaluation of deci in the program, is defined recursively as follows: deci
is evaluated in ENV(i-1) returning enviromment Ei, and then ENVi = ENV(i-1)+Ei.

13

4, Directives

Directives are included in ML as (syntactically) a subclass of declarations.
They possess scope, as do all declarations.

There is only one kind of directive in the standard language, namely those
concerning the infix status of value variables and constructors. Others,
perhaps also concerned with syntactic conventions, may be included in extensions
of the language. The directives concerning infix status are:

Anfix<<r>> <KLd>> id1 ___ idn
nonfix id1 ___ idn

where d is a digit. The infix and infixr directives introduce infix status for
each idi (as a value variable or constructor), and the honfix directive cancels
it. The digit d (default 0) determines the precedence, and an infixed
identifier associates to the left if introduced by infix, to the right if by
infixr. Different infixed identifiers of equal precedence associate to the
left. As indicated in Appendix 1, the precedence of infixed application is Jjust
weaker than that of application.

While id has infix status, each occurrence of it (as a value variable or
constructor) must be infixed or else preceded by op. Note that this includes
occurrences of the identifier within patterns, even binding occurrences of
variables.

Several standard functions and constructors have infix status (see Appendix
3) with precedence; these are all left associative except "::",

It may be thought better that the infix status of a variable or constructor
should be established in some way within its binding occurrence, rather than by
a separate directive. However, the use of directives avoids problems in
parsing.

The use of local directives (introduced by let or local) imposes on the
parser the burden of determining their textual scope. A quite superricial
analysis is enough for this purpose, due to the use of end to delimit loecal
scopes.

14

5. Standard bindings
The bindings of this section form the standard top-level environment ENVO.
5.1 Standard type constructors

The bare language provides the record type "{labl:tyl, __ , labn:tyn}" for
each n20, and the infixed function-type constructor m->", Otherwise, type
constructors are postfixed. The following are standard:

Type constants (nullary constructors) : unit,bool,int,real,string
Unary type constructors : list,ref

None of the identifiers ->, ¥, unit, bool, int, real, string, list, ref may be

redeclared as type constructors. ("¥" is used in the type of n-tuples, a
derived form of record type.)

The constructors unit, bool and list are fully defined by the following
assumed declaration

Anfixr 5 ::

type unit = {}
datatype bool = true | false
and 'a list = nil | op :: of {#1:'a, #2:'a list}

The word "unit" is chosen since the type contains just one value "{}", the empty
record. This is why it is preferred to the word "void"™ of ALGOL 68.

The type constants int, real and string are equipped with special. constants
as described in Section 2.3. The type constructor ref is for constructing
reference types; see Section 7.

5.2 Standard functions and constants

All standard functions ana constants are listea in Appendix 3. There is not
a lavish number; we envisage function libraries provided by each implementation,
together with the equivalent ML declaration of each function (though the
implementation may be more efficient). In time, some such library functions may
accrue to the standard; a likely candidate for this is a group of array-handling
functions, grouped in a standard declaration of the unary type constructor
"array™®.

Most of the standard functions and constants are familiar, So we need mention
only a few critical points:

(1) explode yields a list of strings of size 1; implode is iterated string
concatenation ("). ord yields the Ascii code number of the tirst
character of a string; chr yields the Ascii character (as a string of
size 1) corresponding to an integer. The ordering relations <, >, <= and
>= on strings use the lexicographic order; for this purpose, the newline
character "\n" is identified with linefeed.

(2) ref is a monomorphic function, but in patterns it may be used
polymorphically, with type 'a ->'a ref .

15

(3) The character functions ord and chr, the arithmetic operators #, /, div,
mod, + and - , and the standard functions floor, sqrt, exp and 1ln may
raise standard exceptions (see Section 5.3) whose name in each case is
the same as that of the function. This occurs for ord wnen the string is
empty; for chr when the the integer is not an Ascii code; and for the
others when the result is undefined or out of range.

(4) The values r = amod d and q = a div d are determinea by the conaition

d#¥q + r = a , where either 0<r<d or d<r<0 . Thus the remainder takes

the same sign as the divisor, and has lesser magnitude. The result of

arctan 1lies between +pi/2, and 1n (the inverse of exp) is the

natural logarithm. The value floor(x) is the largest integer < x; thus
rounding may be done by floor(x+0.5) .

(5) Two multi-typed functions are included as quick debugging aids. The
function print :ty->ty is an identity function, wnich as a side-effect
prints its argument exactly as it would be printea at top-level. The
printing caused by "print(exp)" will depend upon the type ascribed to
this particular occurrence of exp ; thus print is not a normal
polymorphic function. The function makestring :ty->string is similar,
but instead of printing it returns as a string what print would produce
on the screen. Since top-level printing is not fully specified, programs
using these two functions should not be portea between implementations.

5.3 Standard exceptions

- All predeclared exception names are of type unit. There are three special
ones: match, bind and interrupt. These exceptions are raised, respectively, by
failures of matching and binding as explainea in Sections 3.4 ana 3.6, and by an
interrupt generated (often by the user) outside the program. Note, however,
that match and bind exceptions cannot occur unless the compiler has given a
warning, as detailed in Section 10(2),(3), except in the case of a top-level
declaration as indicated in 10(3).

The only other predeclared exception names are
ord chr # / div mod + - floor sqrt exp 1n
Each name identifies the corresponding standard function, which is ill-defined
or out of range for certain arguments, as detailed in Section 5.2. For example,
using the derived handle form explained in Section 8.2, the expression
3 div x handle div => 10000

will return 10000 when x = 0.

16

6. Standard Derived Forms
6.1 Expressions and Patterns

tyl1 # ___ % tyn

Expressions :
@)
(expl, __ , expn)
raise exn
case exp of match
if exp then exp1 else exp2
exp orelse exp'
exp andalso exp'

(expl; __ ; expn; exp)

let dec in
expl; ___ ; expn end

while exp do exp'

[exp1 , _ , expn]

Handling rules :

exn => exp

Patterns :
0O
(patt, __ , patn)
[pat1, _ , patn]

{ ., id<<:ty>><<as pat>>, __}

{ #1:ty1, __ , #n:tyn }

{1} (no space in "()")
{ #1=exp1, __ , #n=expn } (n>2)
raise exn with ()

(fn matech) (exp)

case exp of true=dexp1 | false=>exp2

Af exp then true else exp!

if exp then exp' else false

case expl of () =>

case expn of (_) => exp (n21)
let dec in

(exp1; __ ; expn) end
let val rec £ = fn () =>

Af exp then (exp'; £()) else ()

in £() end
expl:: __ ::expn::nil (n>0)
exn with () => exp
{1} (no space in ®"()")
{ #1=pat1, __ , #n=patn } (n22)
patl:: __ ::patn::nil (n20)

{ ., id=id<<:ty>><<as pat>>, __}

17

Each derived form may be implemented more efficiently than its equivalent
form, but must be precisely equivalent to it semantically. The type-checking of
each derived form is also defined by that of its equivalent form. The
precedence among all bare and derived forms is shown in Appendix 1.

The derived type "ty1l # __ ¥ tyn" is called an (n-)tuple type, and the values
of this type are called (n-)tuples. The associated derived forms of expressions
and patterns give exactly the treatment of tuples in the previous ML proposal
[5].

The shortened raise form is only admissible with exceptions of type unmit.
The shortened form of handling rule is appropriate whenever the excepted value
is immaterial, and is therefore (in the full form) matchea to the wildecard
pattern.

The final derived pattern allows a label ana its associated variable to be
elided in a record pattern, when they are the same identifier.

6.2 Bindings and Declarations

A new syntax class fb, of function bindings, is introduced. Function
bindings are a convenient form of value binding for function declarations. The
equivalent form of each function binding is an ordinary value binding. These
new function bindings must be declared by "fun", not by "val"; however, the bare
form of value binding may still be used to declare functions, using val or val

rec.

DERIVED FORM EQUIVALENT FORM
Function bindings fb :

var apat11 ___ apatin<<£:ty>>= exp1 var = fn x1 => __ fn xn =>
- — case (x1, _ , xn)
of (apat11, __ , apatin) => expi<<:ty>>

| var a;;fm1___ apatmn<<:ty>>= expm

| (apatml, __ , apatmn) => expm<<:ty>>
(where the xi are
new, and m,n>1)

fb1 and __ and fbn vb1 and ___ and vbn
(where vbi is the
equivalent of fbi)
Declarations :
fun fb yal rec vb (where vb is the
equivalent of fb)
exp yal it = exp

The last derived declaration (using "it") is only allowed at top-level, for
treating top-level expressions as degenerate declarations; "it" is just a normal
value variable.

18

7. References and equality
7.1 References and assignment

Foliowing Cardelli, references are provided by the type constructor "ref".
Since we are sticking to monomorphic references, there are two overloaded
functions available at all monotypes mty:

(1) ref : mty -> mty ref, which associates (in the store) a new reference
with its argument value. "ref" is a constructor, and may be used
polymorphically in patterns, with type ‘'a -> 'a ref .

(2) op := : mty ref * mty -> unit , which associates its first (reference)
argument with its second (value) argument in the store, and returns () as
result.

The polymorphic contents function "I" is provided, and is equivalent to the
declaration "fun !(ref x) = x".

7.2 EQuality

The overloaded equality function op = : ety ®* ety -> bool is available at
all types ety which admit equality, according to the definition below. The
effect of this definition is that equality will only be applied to values which
are built up from references (to arbitrary values) by value constructors,
including of course constant values. On references, equality means identity; on
objects of other types ety, it is defined recursively in the natural way.

The types which admit equality are as follows, assuming that abbreviations
introduced by type bindings have first been expanded out:

(1) A type ty admits equality iff it is built from arbitrary reference types by
the record type construction and by type constructors which admit equality.

(2) The standard type constructors bool, int, real, string and list all admit
equality.

Thus for example, the type (int * 'a ref)list admits equality, but
(int * 'a)list and (int -> bool)list do not.

A user-defined type constructor tycon, declared by a datatype binding db
whose form is

<{<tyvar_seq>>tycon = coni<<of ty1>> | __ | conn<<of tyn>>

admits equality within its scope (but, if declared by abstype, only within the
Hith part of its declaration) iff it satisfies the following condition:

(3) Each construction type tyi in this binding is built from arbitrary reference
types and type variables, either by type constructors which already admit
equality or by tycon or any other type constructor declared by simultaneously
with tycon, provided these other type constructors also satisfy the present
condition.

The first paragraph of this section should be enough for an intuitive
understanding of the types which admit equality, but the precise definition is
given in a form which is readily incorporated in the type-checking mechanism.

19

8. Exceptions
8.1 Discussion

Some discussion of the exception mechanism is needed, as it goes a little
beyond what exists in other functional languages. It was proposed by Alan
Mycroft, as a means to gain the convenience of dynamic exception trapping
without risking violation of the type discipline (and indeed still allowing
polymorphic exception-raising expressions). Brian Monahan pu. forward a similar
idea. Don Sannella also contributed, particularly to the nature of the derived
forms (Section 8.2); these forms give a pleasant way of treating standard
exceptions, as explained in Section 5.3.

The rough and ready rule for understanding how exceptions are handled is as
follows. If an exception is raised by a raise expression

raise exn with exp

which lies in the textual scope of a declaration of the exception name exn, then
it may be handled by a handling rule

exn yith match

in a handler, but only if this handler is in the textual scope of the same
declaration. Otherwise it may only be caught by the universal handling rule

? => exp! .

This rule is perfectly adequate for exceptions declared at top level; some
examples in Section 8.4 below illustrate what may occur in otner cases.

8.2 Derived forms

A handler discriminates among exception packets in two ways. First, it
handles just those packets (e,v) for which e is the exception bound to the
exception name in one of its handling rules; second, the match in this rule may
discriminate upon v, the excepted value. Note however that, if a universal
handling rule "? => exp'" is activated, then all packets are handled without
discrimination. Thus "?"™ may be considered as a wildeard, matching any packet.
It should be used with some care, bearing in mind that it will even handle
interrupts.

A case which is likely to be frequent is when discrimination is required upon
the exception, but not upon the excepted value; in this case, the derived
handling rule -

exn => exp'

is appropriate for handling. Further, exceptions of type umt may be raised by
the shortened form

raise exn

since the only possible excepted value is ().

20

8.3 An example

To illustrate the generality of exception handling, suppose that we have
declared some exceptions as follows:

exception oddlist :int list and oddstring :string

and that a certain expression exp:int may raise either of these exceptions and
also runs the risk of dividing by zero. The handler in the following handle
expression would deal with these exceptions:

exp handle oddlist with [] => 0
I [x] => 2¥#x
| xoeyse_ => x
|| oddstring with "" => 0
| s => size(s)-1
Il div => 10000

Note that the whole expression is well-typed because in each handling rule the
type of each match-pattern is the same as the exception type, and because the
result type of each matech is int , the same as the type of exp. The last
handling rule is the shortened form appropriate for exceptions of type unit .

Note also that the last handling rule will handle div exceptions raised by
exp , but will not handle the div exception which may be raised by "x div y"
within the first handling rule. Finally, note that a universal handaling rule

It 2 => 50000

at the end would deal with all other exceptions raised by exp .

8.4 Some pathological examples

We now consider some possible misuses of exception handling, which may arise
from the fact that exception declarations have scope, and that each evaluation
of a generative exception binding creates a distinct exception. Consider a
simple example:

exception exn : bool;
fun f(x) =
Jet exception exn:int in
Af x > 100 then raise exn with x else x+1
end;

£(200) handle exn with true=>500 | false=>1000;

The program is well-typed, but useless. The exception bound to the outer exn is
distinet from that bound to the inner exn; thus the exception raised by £(200),
with excepted value 200, could only be handled by a handler within the scope of
the inner exception declaration - it will not be handled by the handler in the
program, which expects a boolean value. So this exception will be reported at
top level. This would apply even if the outer exception declaration were also
of type int; the two exceptions bound to exn would still be distinect.

On the other hand, if the last line of the program is changed to

£(200) handle ? => 500 ;

21

then the exception will be caught, and the value 500 returned. A universal
handling rule (i.e. containing "?") catches any exception packet, even one
exported from the scope of the declaration of the associated exception name, but
cannot examine the excepted value in the packet, since the type of this value
cannot be statically determined.

Even a single textual exception binding - if for example it is declared
within a recursively defined function - may bind distinct exceptions to the same
identifier. Consider another useless program:

fun f(x) =
let exception exn in
Af p(x) then a(x) else
if q(x) then f(b(x)) handle exn => c(x)
else raise exn with d(x)
end;
f£(v);

Now if p(v) is false but q(v) is true, the recursive call will evaluate f(b(v)).
Then, if both p(b(v)) and q(b(v)) are false, this evaluation will raise an exn
exception with excepted value d(b(v)). But this packet will not be handled,
since the exception of the packet is that which is bound to exn by the inner -
not outer - evaluation of the exception declaration.

These pathological examples should not leave the impression that exceptions
are hard to use or to understand. The rough and ready rule of Section 8.1 will
almost always give the correct understanding.

9. Iype-checking

The type discipline is exactly as in original ML, and here only a few points
about type-~checking will be discussed.

In a match "pati=dexp1 | __ | patn=>expn", the types of all pati must be the
same (ty say), and if variable var occurs in pati then all free occurrences of
var in expl must have the same type as its occurrence in pati. In addition, the
types of all the expi must be the same (ty! say). Then ty=->ty' is the type of
the match. The type of "fn match" is the type of the match.

The type of a handler rule "exn with match® is ty', where exn has type ty and
match has type ty->ty'. The type of a universal handling rule "? => exp"®™ is the
type of exp . The type of a handler is the type of all its handling rules
(which must therefore be the same), and the type of "exp handle handler" is that
of both exp and handler. The type of "raise exn with exp" is arbitrary, but exp
and exn must have the same type. Exceptions may be polymorphic; any exn must
have the same type at all occurrences within the scope of its declaration.

A type variable is only explicitly bound (in the sense of variable-binding in
lambda-calculus) by its occurrence in the tyvar_seq on the left hand side of a
simple type or datatype binding "<<tyvar_seq>>tycon = __ ", and then its scope
is the right hand side. (This means for example that bound uses of 'a in both
tb1 and tb2 in the type binding "tb1 and tb2" bear no relation to each other.)
Otherwise, repeated occurrences of a type variable may serve to link explicit
type constraints. The scope of such a type variable is determined by its first
occurrence (ignoring all occurrences which 1lie within scopes already thus

determined). If this first occurrence is in an exception declaration, then it

22

. has the same scope as the declared exception(s); otherwise, its scope is the
smallest val (or fun) declaration in which it lies. For example, consider

fun G(f:'a=>'b)(x:'a) = let val y:'b = £(x)
and Id = (fn x:'c => x)
in (Id(x):'a, Id(y):'b) end

Here the scope of both 'a and 'b is the whole fun declaration, while the scope
of 'c is just the yal declaration. Note that this allows "Id" to be used
polymorphically after its declaration. Moreover, type-checking must not further
constrain a type variable within its scope. Thus for example the declaration
"fun Apply(f:ta->'b)(x:'a):'b = x" - in which "x" has been written in error in
place of "f(x)" - will be faulted since it requires 'a and 'b to be equated.

A simple datatype binding "<<tyvar_seq>>tycon = __ " is generative, since a
new unique type constructor (denoted by tycon) is created by each textual
occurrence of such a binding. A simple type binding "<<tyvar_seqg>>tycon = ty",
on the other hand, is non-generative; to take an example, the type binding
" 'a couple = 'a ¥ 'a " merely allows the type expression "ty couple® to
abbreviate "ty * ty" (for any ty) within its scope. There is no semantic
significance in abbreviation; in the Core language it is purely for brevity,
though in Modules non-generative type-bindings are essential in matching
Signatures. However, the type-checker should take some advantage of non-local
type abbreviations in reporting types at top-level; in doing this, it may need
to choose sensibly between different possible abbreviations for the same type.

Some standard function symbols (e.g. =,+) stand for functions of more than
one type; in these cases the type-checker should complain if it cannot determine
from the context which is intended (an explicit type constraint may be needed).
Note that there is no implicit coercion in ML, in particular from int to real;
the conversion function real:int->real must be used explicitly.

10. Syntactic restrictions

(1) No pattern may contain the same variable twice. No binding may bind the
same identifier twice. No record type, record expression or record pattern
may use the same label twice. In a record type or expression, either all
labels must be identifiers or they must be the numeric labels #1, __ , #n for
some n. The same applies to record patterns, except that some numeric labels
may be absent if "..." is present.

(2) In a match "pati=Dexp1 | __ | patn=>expn", the pattern sequence patl, __ ,
patn should be irredundant and exhaustive. That is, each patj must match

some value (of the right type) which is not matched by pati for any i<j, and
every value (of the right type) must be matched by some pati. The compiler
must give warning on violation of this restriction, but should still compile
the match. Thus the "match" exception (see Section 3.4) will only be raised
for a matech which has been flagged by the compiler. The restriction is
inherited by derived forms; in particular, this means that in the function
binding "var apatl __ apatn<<:ty>> = exp" (consisting of one clause only),
each separate apati should be exhaustive by itself.

(3) For each value binding "pat = exp" the compiler must issue a report (but
still compile) if either pat is not exhaustive or pat contains no variable.
This will (on both counts) detect a mistaken declaration like %"val nil = exp"
in which the user expects to declare a new variable nil (whereas the language

23

dictates that nil is here a constant pattern, so no variable gets declared).
However, these warnings should not be given when the binding is a component
of a top-level declaration yal vb ; e.g. "val x::1 = expl and y = exp2" is
not faulted by the compiler at top level, but may of course generate a "bind"
exception (see Section 3.6).

(4) For each value binding "pat = exp" within rec, exp must be of the form
"fn match®. The derived form of value binding given in Section 6.2
necessarily obeys this restriction.

(5) In the left hand side ®"<<tyvar_seq>>tycon" of a simple type or datatype
binding, the tyvar_seq must contain no type variable more than once. The
right hand side may contain only the type variables mentioned on the left.
Within the scope of the declaration of tycon, any occurrence of tycon must be
accompanied by as many type arguments as indicated by the <<tyvar_seq>> in
the declaration.

(6) Assume temporarily that locally declared datatype constructors have been
renamed so that no two textually distinet datatype bindings bind
identically-named datatype constructors. Then, if the typechecker ascribes
type ty to a program phrase p , every datatype constructor in ty must be
declared with scope containing p . For example, if ¢ty is ascribed to
exp in "let dec in exp end" then ty must contain no datatype constructor
declared by dec , since ty is also the type ascribed to the whole let
expression.

(7) Every global exception binding - that is, not localised either by let or by
local - must be explicitly constrained by a monotype.

(8) If, within the scope of a type constructor tycon, a type binding tb or
datatype binding db binds (simultaneously) one or more type constructors
tyconl, __ , tyconn then: (a) if the identifiers tyconi are all distingct from
tycon, then their value constructors (if any) must also have identifiers
distinet from those (if any) of tycon; (b) if any tyconi is the same
identifier as tycon, then any value constructor of tycon may be re-bound as a
value constructor for one of tyconl, __ , tyconn, but is otherwise considered
unbound (as a variable or value constructor) within the scope of tb or
db , unless it is bound again therein. This constraint ensures that the
scope of a type constructor is identical with the scopes of its associated
value constructors, except that in an abstype declaration the scope of the
value constructors is restricted to the with part.

The sister report [7] on ML Modules describes how ML declarations are grouped
together into Structures which can be compiled separately. Structures, and the
Functors which generate them, may not be declared locally within ML programs,
but only at top-level or local to other Structures and Functors; this means that
the Core language is largely unaffected by their nature.

However, Structures and their components (types, values, exceptions and other
Structures) may be accessed from ML programs via qualified names of the form

id1. __ .idn.id (n21)
where id1, _ , idn are Structure names, each idi is the name of a component

24

structure of id(i-1) for 1<i<n, and id is either a type constructor, a value
constructor, a value variable, an exception name or a Structure name declared as
a component of Structure idn. Thus the syntax classes tycon, con, var and exn
are extended to include qualified names. Further, the declaration

open id1. __ .idn (n21)

(where id1, __ , idn are as above) allows the components of the Structure
id1. .1dn to be named without qualification in the scope of the declaration.

Each Structure is equipped with a Signature, which determines the nature and
type of each component, and this permits static analysis and type-checking for
programs which use the Structure.

12. Conclusion

This design has been under discussion for over two years. In the conclusion
(Section 11) of [5] we predicted that a few infelicities of design would emerge
during the last year, and this has happened. But they are satisfyingly few.
Use of the language by a wider community will probably raise further suggestions
for change, but against this we must set the advantage of maintaining complete
stability in the language. We shall adopt a policy of minimum change.

At the same time, extensions to ML - ones which preserve the validity of all
existing programs - may be suggested either by practical need or by increased
theoretical understanding. Examples of the latter may be the introduction of
polymorphic assignment, or the extension of the equality predicate to a wider
class of types. We hope that these extensions will be made when appropriate.

REFERENCES:

[1] M.Gordon, R.Milner and C.Wadsworth (1979) Edinburgh LCF. Springer-Verlag,
Lecture Notes in Computer Science, Vol 78.

[2] R.Burstall, D.MacQueen and D.Sannella (1980) HOPE: An Experimental
Applicative Language. Report CSR-62-80, Computer Science Dept, Edinburgh
University.

[3] L.Cardelli (1982) ML under UNIX. Bell Laboratories, Murray Hill, New
Jersey.

[4] R.Milner (1983) A Proposal for Standard ML. Report CSR-157-83, Computer
Science Dept, Edinburgh University.

[5] R.Milner (1984) The Standard ML Core Language. Report CSR-168-84, Computer
Science Dept, Edinburgh University.

[6] R.Harper (1985) Standard ML Input/Output. Computer Science Department,
Edinburgh University.

[7] D.MacQueen (1985) Modules for Standard ML. AT&T Bell Laboratories, Murray
Hill, New Jersey.

25

aexp ::=

<Lop>>var (variable)
<<op>>con (constructor)
{ lab1=zexp1, __ , labn=expn } (record, n>0)
() (0-tuple)
(exp1 , __ , expn) (n-tuple, n>2)
[expt , _ , expn] (1ist, n>0)
(exp1 ; __ ; expn) (sequence, n>1)
exp ::=
aexp (atomic)
exp aexp L(application)
exp id exp!' (infixed application)
exp : ty L(constraint)
exp andalso exp' (conjunction)
exp orelse exp' (disjunction)
exp handle handler R(handle exception)
raise exn <<uith exp>> (raise exception)
if exp then exp1 else exp2 (conditional)
while exp do exp' (iteration)
let dec in exp1 ; __ ; expn end (local declaration, n>1)
case exp of match (case expression)
£n match (function)
matech ::= handler ::=
rulel | __ | rulen (n>1) hrulel || __ || hrulen (n21)
rule ::= hrule ::=
pat => exp exn yith match
exn => exp
? => exp
apat ::=
— (wildeard)
<<Lop>>var (variable)
con (constant)
{ labl=pat1, __ , labn=patn <<, ...>>} (record,n>0) ##
@] (0-tuple)
(patt , __ , patn) (tuple, n>2)
[pat1 , __ , patn] (list, n>0)
(pat)
pat ::=
apat (atomic)
<<op>>con apat L(construction)
pat con pat! (infixed construction)
pat : ty L(constraint)
<Lgp>>var<L:ty>> as pat R(layered)

#% If n=0 then omit the comma; "{...}" is the pattern which matches any record.
If a component of a record pattern has the form "id=id<<:ty>><<as pat>>",
then it may be written in the elided form "id<<:ty>><<as pat>>".

26

i) H .. . \ . . \ b ' o = .
(See Section 2.8 for conventions)

ty ::=
Y tyvar (type variable)
<<ty_seq>>tycon (type construction)
{ lab1:ty1, __ , labn:tyn } (record type, n20)
tyl # __ #* tyn (tuple type, n>2)
tyl => ty2 R(function type)
(ty)
vb ::=
pat = exp (simple)
vbl and __ and vbn (multiple, n>2)
rec vb (recursive)
fb ::=
<Lgp>>var apatl1 __ apatin<<:ty>> = expl (clausal function,
b m,n>1) ##
| <<op>>var apatmi1 ___ apatmn<<:ty>> = expm
fb1 and __ and fbn (multiple,n>2)
th ::=
<<{tyvar_seq>>tycon = ty (simple)
tb1 and __ and tbn (multiple,n>2)
db ::=
<<tyvar_seq>>tycon = constrs (simple)
db1 and __ and dbn (multiple,n>2)
constrs ::=
<<gp>>coni<<Lof ty1>> | __
| <<op>>conn<<of tynd>> (n21)
eb ::=
exn<d<:ty>><< =exn'>> : (simple)
ebl and __ and ebn (multiple, n>2)
dec ::=
yal vb (value declaration)
fun fb (function declaration)
Ltype tb (type declaration)
datatype db (datatype declaration)
abstype db with dec end (abstract type declaration)
exception eb (exception declaration)
local dec in dec' end (local declaration)
exp (top-level only)
dir (directive)
dec1<<;>> __ decn<<;>> (declaration sequence,n>0)
dir ::=
Anfix<<r>> <Kd>> id1 __ idn (declare infix,0<£d<9)
nonfix id1 ___ idn (cancel infix)

#% Tf var has infix status then op is required in this form; alternatively
var may be infixed in any clause. Thus, at the start of any clause,
"op var (apat,apat') __ " may be written "(apat var apat') __ ";
the parentheses may also be dropped if ":ty" or "=" follows immediately.

27

In the types of these bindings, "num" stands for either int or real, and "nums"
stands for integer, real or string (the same in each type). Similarly "ty"
stands for an arbitrary type, "mty" stands for any monotype, and "ety" (see

Section 7.2) stands for any type admitting equality.

nonfix infix
nil : 'a list Precedence 7 :
map s (ta=>'b) => 'a list / : real * real =) real
-> 'b list div : int #* int -> int
rev : ta list => 'a list mod : ¢ " "
:num * num -> num
true,false : bool
not : bool => bool Precedence 6 :
+ H " n n
~ : num -=> num - " "
abs ! num -> num ® : string * string -> string
floor : real -> int
real : int => real Precedence 5 :
sqrt : real -> real s : 'a ® '3 list ~> 'a list
sin,cos,arctan : real =) real @ : 'alist * 'a list
exp,1ln : real -> real => 'a list
Precedence Y :
size : string => int = : ety % ety => bool
chr ¢ int => string O " »
ord ¢ string -> int < : nums * nums -> bool
explode : string -> string list > ¢ " "
implode ¢ string list -> string {= " " "
>= e " n 1]
ref : mty => mty ref
! : 'aref => 'a Precedence 3 :
o : ('b=>'c) #* ('a->'b)
print : ty > ty => (ta=>'e)
makestring : ty -> string := ¢ mty ref # mty -> unit

Special constants: as in Section 2.3.

Notes:
(1) The following are constructors, and thus may appear in patterns:
nil true false ref HH and all special constants.
(2) Infixes of higher precedence bind tighter. "::" associates to the right;
otherwise infixes of equal precedence associate to the left.

(3) The meanings of these predeclared bindings are discussed in Section 5.2.

28

Standard ML Input/Output

Robert W. Harper
June 6, 1985

1 Introduction

This document describes the Standard ML [1] character stream input/output
system. The basic primitives defined below are intended as a simple basis that
may be compatibly superseded by a more comprehensive 1/O system that provides
for streams of arbitrary type or a richer repertoire of I/O operations. The I/0
primitives are organized into two modules, one for the basic I/O primitives that
are required to be provided by all implementations, and one for extensions to the
basic set. An implementation may support any, all, or none of the functions in
the extended I/O module, and may extend this module with new primitives. If an
implementation does not implement a primitive from the set of extensions, then
it must leave it undefined so that unsupported features are recognized at compile
time.

The fundamental notion in the SML I/O system if the (finite or infinite)
character stream. There are two types of stream, instream for input streams, and
outstrean for output streams. These types are provided by the implementation
of the basic I/O module. Interaction with the outside world is accomplished
by associating a stream with a producer (for input streams) or a consumer (for
output streams). The notion of a producer and a consumer is purely metaphorical.
Their realization is left to each implementation; the SML programmer need be
aware of their existence only insofar as it is necessary to imagine the source (or
sink) of characters in a stream. For instance, ordinary disk files, terminals, and
processes are all acceptable as producers or consumers. A given implementation
may support a range producers and consumers; all implementations must allow
disk files to be associated with input and output streams.

Streams in SML may be finite or infinite; finite streams may or may not have a
definite end. A natural use of an infinite stream is the connection of an instream
to a process that generates an infinite sequence, say of prime numbers represented
as numerals. Most often streams are finite, though not always terminated. Or-
dinary disk files are a good example of producers of finite streams of characters.

Processes as producers give rise to the notion of an unterminated finite stream
— a process may at any time refuse to supply an more characters to a stream,
a condition which is, of course, undetectable. All subsequent input requests will
therefore wait forever. Primitives are provided for detecting the end of an input
stream and for terminating an output stream.

The stream types provided by the basic I/O module are abstract, and as such
have no visible structure. However, it is helpful to imagine that each stream has
associated with it a buffer that mediates the interaction between the ML system
and the producer or consumer associated with that stream, and a control object,
which is used for device-specific mode—setting and control. A typical example of
the use of the control object is to modify the character processing performed by
a terminal device driver.

In the spirit of simplicity and generality, this proposal does not treat such
implementation—dependent details as the resolution of multiple file access (both
within and between processes), and the names of files and processes. The window
between the SML system and the operating system is limited to two primitives,
each of which takes a string parameter whose interpretation is implementation—
specific. One convention must be enforced by all implementations — end of line is
represented by the single newline character, \n, regardless of how it is represented
by the host system. However, since end of file is a condition, as opposed to a
character, the means by which this condition is indicated on a terminal is left to
the implementation.

2 Basic I/O Primitives

The fundamental I/O primitives are packaged into a structure with signature
BasicIO (see Figure 1). A structure matching this signature (and having the
semantics defined below) must be provided by every SML implementation. It is
implicitly open’d by the standard prelude so that these identifiers may be used
without the qualifier BasicI0.

The type instrean is the type of input streams and the type outstrean is
the type of output streams. The exception io_failure is used to represent all of
the errors that may arise in the course of performing I/O. The value associated
with this exception is a string representing the type of failure. In general, any
I/O operation may fail if, for any reason, the host system is unable to perform
the requested task. The value associated with the exception should describe the
type of failure, insofar as this is possible.

The standard prelude binds std_in to an instream and binds std_out to an
outstream. For interactive ML processes, these are expected to be associated with
the user’s terminal. However, an implementation that supports the connection of

2

signature BasicI0 = gig
(* Types and exceptions *)
type instream
type outstreanm
exception io_failure: string

(* Standard input and output streams #*)
val std_in: instream
val std_out: outstream

(* Stream creation *)
val open_in: string -> instream
val open_out: string -> outstream

(* Operations on input streams *)
val input: instream * int -> string
val lookahead: instream -> string
val close_in: instream -> unit

val end_of_stream: instream -> bool

(* Operations on output streams *)
val output: outstream * string -> unit
val close_out: outstream -> unit

end

Figure 1: Basic I/O Primitives

processes to streams may associate one process’s std_in with another’s std_out.

The open_in and open_out primitives are used to associate a disk file with
a stream. The expression open_in(s) creates a new instream whose producer
is the file named 8 and returns that stream as value. If the file named by s
does not exist, the exception io_failure is raised with value "Cannot open ""s.
Similarly, open_out(s) creates a new outstream whose consumer is the file s,
and returns that stream.

The input primitive is used to read characters from a stream. Evaluation of
input(s,n) causes the removal of n characters from the input stream s. If fewer
than n characters are currently available, then the ML system will block until
they become available from the producer associated with s.! If the end of stream

1The exact definition of “available” is implementation-dependent. For instance, operating sys-

3

signature ExtendedI0 = sig
val execute: string -> instream * outstream
val flush_out: outstream -> unit
val can_input: instream * int -> bqol
val input_line: instream -> string
val open_append: string -> outstream
val is_term_in: instream -> bool
val is_term_out: outstream -> bool
end

Figure 2: Extended I/O Primitives

is reached while processing an input, fewer than n characters may be returned.
In particular, input from a closed stream returns the null string. The function
lookahead(s) returns the next character on instream s without removing it
from the stream. Input streams are terminated by the close_in operation. This
primitive is provided primarily for symmetry and to support the reuse of unused
streams on resource-limited systems. The end of an input stream is detected by
end_of _stream, a derived form that is defined as follows:

val end_of_stream(s) = (lookahead(s)="")

Characters are written to an outstream with the output primitive. The string
argument consists of the characters to be written to the given outstream. The
function close_out is used to terminate an output stream. Any further attempts

to output to a closed stream cause io_failure to be raised with value "Output
stream is closed".

3 Extended I/O Primitives

In addition to the basic I/O primitives, provision is made for a some exten-
sions that are likely to be provided by many implementations. The signature
ExtendedIO (see Figure 2) describes a set of operations that are commonly used
but are either too complex to be considered primitive or to be implementable on
all hosts.

The function execute is used to create a pair of streams, one an instream and
one an outstream, and associate them with a process. The string argument to

tems typically buffer terminal input on a line-by-line basis so that no characters are available
until an entire line has been typed.

execute is the (implementation—-dependent) name of the process to be executed.
In the case that the process is an SML program, the instream created by execute
is connected to the std_out stream of the process, and the outstream returned
is connected to the process’s std_in.

The function £lush_out ensures that the consumer associated with an out-
stream has received all of the characters that have been written to that stream.
It is provided primarily to allow the ML user to circumvent undesirable buffering
characteristics that may arise in connection with terminals and other processes.
All output streams are flushed when they are closed, and in many implementa-
tions an output stream is flushed whenever a newline is encountered if that stream
is connected to a terminal.

The function can_input takes an instream and a number and determines
whether or not that many characters may be read from that stream without
blocking. For instance, a command processor may wish to test whether or not
a user has typed ahead in order to avoid an unnecessary prompt. The exact
definition of “currently available” is implementation—specific, perhaps depending
on such things as the processing mode of a terminal.

The input_line primitive returns a string consisting of the characters from
an instream up through, and including, the next end of line character. If the
end of stream is reached without reaching an end of line character, all remaining
characters from the stream (without an end of line character) are returned.

Files may be open for output while preserving their contents by using the
open_append primitive. Subsequent output to the outstream returned by this
primitive is appended to the contents of the specified file.

Basic support for the complexities of terminal I/O are also provided. The pair
of functions is_term_in and is_term out test whether or not a stream is asso-
ciated with a terminal. These functions are especially useful in association with
std_in and std_out because they are opened as part of the standard prelude. A
terminal may be designated as the producer or consumer of a stream using the
ordinary open.in and open_out functions; an implementation supporting this ca-
pability must specify a naming convention for designating terminals. Terminal
I/0 is, in general, more complex than ordinary file I/O. In most cases the Ex-
tendedI0 module provided by an implementation will have additional operations
to support mode control. Since the details of such control operations are highly
host-dependent, the functions that may be provided are left unspecified.

Acknowledgements

The Standard ML I/O system is based on Luca Cardelli’s proposal [2], and on
a simplified form of it proposed by Kevin Mitchell and Robin Milner. The final

version was prepared in conjunction with Dave MacQueen, Dave Matthews, Robin
Milner, Kevin Mitchell, and Larry Paulson.

References

[1] Robin Milner, The Standard ML Core Language, Edinburgh University.
[2] Luca Cardelli, Stream Input/Output, AT&T Bell Laboratories.

