
Proposed interface for Standard ML Stream I�O

Andrew W� Appel

November �� ����

� Introduction

The Input�Output interface provides�

� bu�ered reading and writing�

� arbitrary lookahead� using an underlying �lazy streams� mechanism�

� dynamic redirection of input or output�

� random access�

� uniform interface to text and binary data�

� layering of stream translations� through an underlying �reader�writer�
interface�

� unbu�ered input�output� through the reader�writer interface or even through
the bu�ered stream interface�

� primitives su�cient to construct facilities for randomaccess reading�writing
to the same �le	

In addition� the prescriptions and recommendations herein allow for e�cient
implementation� minimizing system calls and memory
memory copying	

The I�O system has several layers of interface	 From bottom to top� they
are

PRIM IO Uniform interface for unbu�ered reading and writing at the �system
call� level� though not necessarily via actual system calls	

STREAM IO Bu�ered �lazy functional stream� input� bu�ered conventional
output	

IO Bu�ered� conventional �side
e�ecting� input and output with redirection
facility	





Because most programmers will use the IO interface� I will describe that
�rst� rather informally	 Then I will go bottom
up over the entire system� giving
a technical speci�cation of the interfaces� and their axioms and pragmatics	

� IO

Conventional bu�ered input�output is done using several structures matching
the IO signature� TextIO� for character input�output� BinIO� for binary
�byte� input�output	

signature IO �

sig

type instream

type outstream

type elem

type vector

val open�in � string �� instream

val close�in � instream �� unit

val input � instream �� vector

val input�all � instream �� vector

val input�noblock � instream �� vector option

val input� � instream �� elem option

val input�n � instream � int �� vector

val end�of�stream � instream �� bool

val lookahead � instream �� elem option

val setpos�in � instream � int �� unit �� may raise Io ��

val getpos�in � instream �� int �� always succeeds ��

val open�out � string �� outstream

val close�out � outstream �� unit

val output � �outstream � vector� �� unit

val output� � outstream � elem �� unit

val flush�out � outstream �� unit

val getpos�out � outstream �� int

val setpos�out � outstream � int �� unit

structure StreamIO � STREAM�IO

sharing type elem � StreamIO	elem

sharing type vector � StreamIO	vector

val mk�instream � StreamIO	instream �� instream

val get�instream � instream �� StreamIO	instream

�



val set�instream � instream � StreamIO	instream �� unit

val mk�outstream � StreamIO	outstream �� outstream

val get�outstream � outstream �� StreamIO	outstream

val set�outstream � outstream � StreamIO	outstream �� unit

end

signature TEXT�IO �

sig

include IO

sharing type StreamIO	elem � Word
	word

sharing type StreamIO	vector � Word
Vector	vector

val std�in � instream

val std�out� outstream

val std�err� outstream

end

signature BIN�IO �

sig

include IO

sharing type StreamIO	elem�Word
	word

sharing type StreamIO	vector�Word
Vector	vector

end

structure TextIO � TEXT�IO

structure BinIO � BIN�IO

Operations on instreams

elem
A single element �member of a stream�� for TextIO streams this is char�
for BinIO this is Word��word	

vector
A sequence of elements �such as string or Word�Vector�vector�	

f � open in�s�
Opens a �le named s as a stream f 	

close in�f�
Close f � no further operations are permitted on f �they will raise the Io
exception�	

v � input�f�
Read some elements of f � returning a vector v	 If �and only if� f is at end

�



of �le� size�v� � �	 May block �not return until data is available in the
external world�	

v � input all�f�
Return the vector v of all the elements of f up to end of stream	

input noblock�f�
If any elements of f can be read without blocking� return at least one of
them	 If it is possible to determine without blocking that f is at end of
stream� return some�empty�	 Otherwise return none	

c � input��f�
If at least one element e of f is available� return some�e�	 If f is at end
of �le� return the none	 Otherwise block until one of those conditions
occurs	

v � input n�f� n�
If at least n elements remain before end of stream� return the �rst n

elements	 Otherwise� return the �possibly empty� sequence of elements
remaining before end of stream	 Blocks if necessary	 �This was the be

havior of the input function in the ��� De�nition of Standard ML� and
pre
	�� releases of SML�NJ	�

end of stream�f�
False if any characters are available in f � true if f is at end of stream	
Otherwise blocks until one of these conditions occurs	 Exactly equivalent
to �size�input f����	

c � lookahead�f�
Return the next character without advancing the stream� or at end of �le
return none	 Multiple
character lookahead can be accomplished with the
lazy functional stream interface� see section �	

setpos in�f� i�
Seek to position i in f 	

getpos in�f�
Tell the current position �elements since beginning of �le� starting at ��
of f 	 Not always supported �raises Io if not supported on f��

Operations on outstreams

f � open out�s�
Open �for writing� a �le named s �creating it if necessary� as an outstream
f 	

�



close out�f�
Flush f �s bu�er and close the stream �releasing operating
system resources
associated with it�	

output�f� v�
Write the sequence v to f 	

output��f� x�
Write the element x to f 	

�ush out�f�
Flush f �s bu�er� that is� make the underlying �le re�ect any previous
output operations	

getpos out�f�
Tell the current position of f �not always supported��

setpos out�f� i�
Seek to position i of f �not always supported��

There is also a set of primitives to relate IO streams to the �lazy func

tional streams� model of input�output� and thus to the underlying unbu�ered
reader�writer primitives�

StreamIO
The particular instantiation of the STREAM IO interface underlying
this IO module �i	e	� streams of bytes� chars� or some other element type�	

f �mk instream�s�
Create a conventional stream f from a functional stream s	

s � get instream�f�
Extract the functional stream s from f 	 This allows arbitrary lookahead�
for example�

fun lookahead�n�f�n� �

let val f � mk�instream�get�instream�f��

in input�n�f�n�

end

This makes a �copy� f � of the stream f � then input operations in f �

won�t a�ect f �though setpos in on f � may e�ectively close f�	 For more
details� see the next few sections	

set instream�f� s�
Redirect f � so that further input comes from s	 For example�

�



fun from�file�g�name� �

let val f � open�in name

val save�std�in � get�instream std�in

in set�instream�std�in�get�instream f��

g���

set�instream�std�in� save�std�in�

end

For more details� see the next few sections	

f �mk outstream�s�
Create a conventional outstream f from a StreamIO�outstream s	 The
output streams in StreamIO are not �functional�� they are conventional
streams operated on by side
e�ecting output	 The di�erence between an
IO�outstream and a StreamIO�outstream is that the former may be
redirected using set outstream	 Think of the former as a ref of the
latter	

s � get outstream�f�
Extract the underlying outstream s from the redirectable outstream f 	
Unfortunately� s is not �pure functional�� so there�s no equivalent of the
lookahead trick shown above	 Unlike instreams� if

val f � mk�outstream�get�outstream f�

then operations on f � are equivalent to operations on f 	

set outstream�f� s�
Useful for redirecting output	 For example�

fun to�file�g�name� �

let val f � open�out name

val save�std�out � get�outstream std�out

in set�outstream�std�out�get�outstream f��

g���

set�outstream�std�out� save�std�out�

end

In can be argued that this is not very elegant� the function g� instead of
writing stu� to std out� should have been parameterized �in the usual
ML way� on an outstream from the very beginning	 Then the get and
set primitives wouldn�t be needed	

�



� OS

The primitive I�O �PrimIO�� stream I�O �StreamIO�� and standard I�O �IO�
packages require only these components of the OS structure�

structure OS � sig

type syserror

val noError � syserror

exception SysErr of

�ml�op � string�

os�op � string�

reason � syserror�

end

All �operating system� operations not listed here �reading� writing� etc	� are
parametrized �in the PrimIO�reader and PrimIO�writer types� and may or
may not come from the actual operating system	

� PRIM IO

Primitive I�O is at the level of �le descriptors and system calls	

signature PRIM�IO �

sig

type elem

type vector

type array

exception Io of �

ml�op � string�

name � string�

os�op � string�

reason � string�

syserror � OS	syserror

�

type a buf � �

data � a�

pos � int�

nelems � int

�

datatype writer � Wr of

�



�write�noblock� �vector buf �� int option� option�

writea�noblock� �array buf �� int option� option�

write�block� �vector buf �� int� option�

writea�block� �array buf �� int� option�

block� �unit��unit� option�

can�output� �unit��bool� option�

name� string�

chunksize� int�

close� unit �� unit�

getpos � �unit��int� option�

setpos � �int��unit� option�

file � OS	file option�

datatype reader � Rd of

�read�noblock � �int �� vector option� option�

reada�noblock� �array buf �� int option� option�

read�block � �int �� vector� option�

reada�block� �array buf �� int� option�

block � �unit �� unit� option�

can�input� �unit �� bool� option�

name� string�

chunksize� int�

close � unit �� unit�

getpos � �unit �� int� option�

setpos � �int �� unit� option�

file � OS	file option�

size � unit �� int�

val open�in� string �� reader

val open�out� string �� writer

end

A �le �device� etc	� is a sequence of �elements� �elem�� which may �for
example� be characters or bytes	 The distinction between characters and bytes
is necessary on DOS� where CR
LF is translated to LF when reading character
�les� or on Windows
NT where characters are �
bits �Unicode� and bytes are
� bits	

One typically reads or writes a sequence of elements in one system call� this
sequence is the vector type	 Sometimes it is useful to write the sequence from
a mutable array instead of from the vector	

A reader is a �le �device� etc	� opened for reading� and awriter one opened
for writing	

The components of a writer are�

�



write noblockfbuf�v�pos�i�nelems�ng
This �optional� function without blocking writes elements vi� � � � � vi�k���
for k � n to the output device� and returns some�k�� or �if the write
would block� returns none	 k � � is not recommended �prohibited��	
Raises Io on failure of underlying system call� or Subscript if i � � or
i � n � length�v�	

writea noblockfbuf�a�pos�i�nelems�ng
This �optional� function without blocking writes elements ai� � � � � ai�k���
for k � n to the output device� and returns some�k�� or �if the write
would block� returns none	 k � � is not recommended �prohibited��	

write blockfbuf�v�pos�i�nelems�ng
This �optional� function writes elements vi� � � � � vi�k��� for � � k � n to
the output device� and returns k	 If necessary� waits �blocks� until the
external world can accept at least one element	

writea blockfbuf�a�pos�i�nelems�ng
This �optional� function without blocking writes elements ai� � � � � ai�k���
for � � k � n to the output device� and returns some�k�� or �if the write
would block� returns none	 If necessary� waits �blocks� until the external
world can accept at least one element	

block��
This �optional� function does not return until the writer is guaranteed to
be able to write without blocking	

can output��
�optional� Returns true i� the next write can proceed without blocking	

name
The name associated with this �le or device� for use in error messages
shown to the user	

chunksize
The recommended �e�cient� size of write operations on this writer	 This
is typically to the block size of the operating system�s bu�ers	 If that is
not known� a value of ���� or ���� will probably work well	 Chunksize�
 strongly recommends �but cannot guarantee� since bu�ering occurs in
other modules� not this one� unbu�ered I�O on the writer	 Chunksize�
� is illegal �functions in other modules taking writers as arguments may
raise exceptions�	

close��
Closes the writer �for example� frees operating system resources devoted
to this writer�	 Further operations to this writer are illegal �but it is not
the responsibility of the writer to check for this�	

�



getpos��
�optional� Tells the number of elements in the �le between the beginning
and the current position	 �Initially� getpos�� � �	� Most useful on seek

able writers	

setpos�i�
�optional� Moves to position i in the �le� so future writes occur at this
position	

One of write block or write noblock must be provided	 Providing more
of the optional functions increases functionality and�or e�ciency of clients�

	 Absence of both write block and block means that blocking output is
not possible	

�	 Absence of bothwrite noblock and can outputmeans that non
blocking
output is not possible	

�	 Absence of write noblock means that non
blocking output requires two
system calls �using can output� write block�	

�	 Absence of writea block or writea nonblockmeans that extra copying
will be required to write from an array	

�	 Absence of getpos means that bu�ered setpos may be less e�cient	

�	 Absence of setpos prevents random access	

The components of a reader are

close��
Closes the reader �for example� frees operating system resources�	 Further
operations to this reader are illegal but need not be checked for by the
reader	

name
The name associated with this �le or device� for use in error messages
shown to the user	

chunksize
The recommended �e�cient� size of read operations on this reader	 This is
typically to the block size of the operating system�s bu�ers	 If that is not
known� a value of ���� or ���� will probably work well	 Chunksize �
 strongly recommends �but cannot guarantee� since bu�ering occurs in
other modules� not this one� unbu�ered I�O on this reader	 Chunksize�
� is illegal	

�



read noblock�n�
�optional� Reads i elements without blocking� for � � i � n creating a
vector v� returning some�v�� or �if a read would block� returns none	

read block�n�
�optional� Reads i elements for � � i � n returning a vector v of length i�
blocks �waits� if necessary until at least one element is available	

reada noblockfbuf�a�pos�i�nelems�ng
�optional� Reads k elements without blocking� for � � k � n into ai� � � � � ai�k���
returning some�k�� if no elements remain before end
of
�le� returns some���
without blocking� or �if a read would block� returns none	

reada blockfbuf�a�pos�i�nelems�ng
�optional� Reads k elements for � � k � n into ai� � � � � ai�k��� returning a
vector k� blocks �waits� if necessary until at least one element is available	
If no elements reamain before end
of
�le� returns �	

block��
�optional� Returns only when at least one element is available for read
without blocking	

can input��
�optional� Returns true i� the next read can proceed without blocking	

getpos��
�optional� Tells the current position in the �le �� means beginning of �le�	
Useful even for non
seekable �les� if the size function is provided �because
large input operations are more e�cient if the distance from �here to end
of �le� is known�	

setpos�i�
�optional� Move to position i in �le	

size��
Hint at the approximate total size �number of elements� of the �le	 If it
is inconvenient to support size accurately� gross inaccuracy �even to the
extent of always reporting �� is permitted	

One of read block or read noblock must be provided	 Providing more of
the optional functions increases functionality and�or e�ciency of clients�

	 Absence of both read block and block means that blocking input is not
possible	

�	 Absence of both read noblock and can inputmeans that non
blocking
input is not possible	





�	 Absence of read noblock means that non
blocking input requires two
system calls �using can input� read block�	

�	 Absence of reada noblock or reada block means that input into an
array requires extra copying	 But I do not anticipate that reading into
arrays will normally be very important in the �lazy functional stream�
model�

Clients ofPrimIO are required to synthesize blocking reads from read noblock�block�
synthesize vector reads from array reads� synthesize array reads from vec

tor reads� as needed�so the PrimIO�reader is required to provide only
a minimum set	 If the reader can provide more than the minimum set in
a way that is more e�cient then the obvious synthesis than by all means
it should do so	 However� providing more than the minimum by just do

ing �inside the PrimIO layer� the obvious synthesis is not recommended�
because then clients won�t get the �hint� about which are the e�cient
��recommended�� operations	

�	 Inaccuracy of size means that very large inputs �where vectors must be
pre
allocated� cannot be done e�ciently �in one system call� without copy

ing� if size is reported too small� or will cause excess memory allocation if
size is reported too large	 Recommendation� size�fn����� is acceptable�
an approximately accurate size is better� an accurate size is best	

�	 Absence of getpos� in the unusual case where a bu�ered system is applied
to a reader not positioned at the beginning of the �le� may lead to excessive
memory allocation of vectors for very large input operations	

�	 Absence of getpos means that bu�ered setpos may be less e�cient	

�	 Absence of setpos prevents random access	

Any of the component functions of readers or writers may raise the Io ex

ception	 No other exceptions should be raised	 The components of Io are�

ml op
The name of the reader�writer component function raising the exception	

name
Should equal the name component of the reader or writer	

os op
The name of the operating system call �if any� that failed� otherwise empty	

syserror
If the Io exception is raised as the result of handling an OS�SysErr excep

tion� then the reason code provided by the operating system	 Otherwise�
OS�noError	

�



reason
If syserror �� OS�noError� then OS�errorName�syserror�� otherwise�
a textual summary of the error	

The functions open in and open out provide system
default ways to create
readers from ��le names	� Structures matching this signature may leave these
two functions unimplemented �by having them raise the Io exception� if there
is no appropriate system default	

� STREAM IO

The Stream I�O interface provides bu�ered reading and writing to input and
output streams	

Input streams are treated in the lazy functional style� that is� input from a
stream f yields a �nite vector of elements� plus a new stream f �	 Input from f

again will yield the same elements� to advance within the stream in the usual
way it is necessary to do further input from f �	 This interface allows arbitrary
lookahead to be done very cleanly� which should be useful both for ad hoc lexical
analysis and for table
driven� regular
expression
based lexing	

Output streams are handled more conventionally� since the lazy functional
style doesn�t seem to make sense for output	

signature STREAM�IO �

sig

structure PrimIO� PRIM�IO

type elem sharing type elem � PrimIO	elem

type vector sharing type vector � PrimIO	vector

type instream

type outstream

val open�in � string �� instream

val mk�instream � PrimIO	reader � string �� instream

val close�in � instream �� unit

val setpos�in � instream � int �� instream

val getpos�in � instream �� int

val input � instream �� vector � instream

val input�all � instream �� vector

val input�noblock � instream �� �vector � instream� option

val input� � instream �� elem option � instream

val input�n � instream � int �� vector � instream

val end�of�stream � instream �� bool

val get�reader � instream �� PrimIO	reader

�



val open�out� string �� outstream

val mk�outstream � PrimIO	writer � string �� outstream

val close�out � outstream �� unit

val output � �outstream � vector� �� unit

val output� � �outstream � elem� �� unit

val flush�out � outstream �� unit

val getpos�out � outstream �� int

val setpos�out � outstream � int �� unit

val get�writer� outstream �� PrimIO	writer

end

Each instream f can be viewed as a sequence of �available� elements �the
bu�er or sequence of bu�ers� and a mechanism �the reader� for obtaining more	
After an operation �v� f �� � input�f� it is guaranteed that v is a pre�x of
the available elements	 In a �truncated� instream� there is no mechanism for
obtaining more� so the �available� elements comprise the entire stream	 In a
�terminated� outstream� there is no mechanism for outputting more� so any
output operations will raise the Io exception	

PrimIO
Every instance of STREAM IO is built over an instance of PRIM IO	

elem
A single element �member of a stream�	

vector
A sequence of elements� just as in PRIM IO	

f � open in�s�
Opens a �le named s as a stream f 	 �Default� implementations of STREAM IO
will support open in� other implementations may choose to support only
mk instream� raising Io on open in	

f �mk instream�r� s�
Create a bu�ered stream f from a reader r	 For purposes of identifying
f to the user if exceptions occur� use the name s	 In r� read block�
reada block� and block must not all be none or an Io exception will be
raised	 �Most users will normally use open in instead	�

close in�f�
Truncate f � and release operating system resources associated with the
underlying �le �if any�	

g � setpos in�f� i�
Now g is a new instream starting from position i of f 	 f may or may not

�



be truncated� depending on whether the setpos request can be satis�ed
within the bu�er	 �Nondeterministic behavior� is that bad�� Not always
supported�

getpos in�f�
Return the current position �elements since beginning of �le� starting at
�� of f 	 Not always supported�

�v� f �� � input�f�
If any elements of f are available� return sequence v of one or more ele

ments and the �remainder� f � of the stream	 If f is at end of �le� return
the empty sequence	 Otherwise read from the operating system �which
may block� until one of those conditions occurs	

v � input all�f�
Return the vector v of all the elements of f up to end of stream	 Seman

tically equivalent to�

fun input�all�f� � let val �a�f� � input f

in if size�a��� then a

else a � input�all f

end

where � is the concatenation operator on element vectors	

�v� f �� � input noblock�f�
If any non
empty sequence v of f is available or can be read from the
operating system without blocking� return some�w� f �� where w is any
non
empty pre�x of v� and f � is the �rest� of the stream	 Otherwise
return none	

�c� f �� � input��f�
If at least one element e of f is available� return �some�e�� f ��	 If f is at end
of �le� return the none	 Otherwise read from the operating system �which
may block� until one of those conditions occurs	 Semantically equivalent
to�

fun input��f� � let val �v�f� � input f

in �if size�v��� then NONE else SOME�sub�v�����

f�

end

�v� f �� � input n�f� n�
If at least n elements remain before end of stream� return the �rst n

elements	 Otherwise� return the �possibly empty� sequence of elements

�



remaining before end of stream	 Blocks if necessary	 �This was the be

havior of the input function in the ��� De�nition of Standard ML	�
Semantically equivalent to�

fun input�n�f��� � �empty� f�

� input�n�f�n� � let val �x�f� � input� f

val �s�f� � input�n�f�n���

in �x�s� f�

end

end of stream�f�
False if any characters are available in f � true if f is at end of stream	
Otherwise reads �perhaps blocking� until one of these conditions occurs	
Exactly equivalent to �size�input f����	

get reader�f�
Extract the underlying reader from f 	 Truncates f 	 Careful users should
probably do something like

let val r � get�reader f

val v � input�all f

in 			

end

so as to obtain the elements v already in the bu�er before doing anything
with r	

f � open out�s�
Open �for writing� a �le named s �creating it if necessary� as an outstream
f 	 Not always supported�

f �mk outstream�w� s�
Create a bu�ered outstream f from a writer w	 For purposes of identifying
f to the user if exceptions occur� use the name s	 In w� write block�
writea block� and block must not all be none or an Io exception will
be raised	

close out�f�
Flush f �s bu�er� terminate f � then close the underlying writer �releasing
operating
system resources associated with it�	

�ush out�f�
Flush f �s bu�er� that is� make the underlying �le re�ect any previous
output operations	

�



output�f� v�
Write the sequence v to f 	

output��f� x�
Write the element x to f 	

get writer�f�
Get the underlying writer associated with f 	 Flushes and terminates f 	

getpos out�f�
Give the current position of f in the underlying �le	 Not always supported�

setpos out�f� i�
Set the current position of f in the underlying �le to i	 Flush f if necessary	
Not always supported�

Any pre�x of the concatenation of previous writes �since the last setpos or
�ush� may be re�ected in the underlying �le	

Operations markedNot always supportedmay fail on some streams or in some
instantiations of the STREAM IO signature� raising Iofsyserror � OS�noError� � � �g	
�Should we make a special OS	notSupported��

Rules� The following expressions are all guaranteed true� if they complete
without exception	

Input is semi
deterministic� input may read any number of elements from
f the ��rst� time� but then it is committed to its choice� and must return the
same number of elements on subsequent reads from the same point	

let val �a��� � input f

val �b��� � input f

in a�b

end

Closing a stream just causes the not
yet
determined part of the stream to
be empty�

let val �a�f� � input f

val � � close�in f

val �b��� � input f

in a�b andalso end�of�stream f

end �� must be true ��

If a stream has already been at least partly determined� then input cannot
possibly block�

let val a � input f

in case input�noblock f

of SOME a �� a�b

� NONE �� false

end �� must be true ��

�



Note that a successful input noblock does not imply that more characters
remain before end
of
�le� just that reading won�t block	

Closing a stream guarantees that the underlying reader will never again be
accessed� so input can�t possibly block�

�case �close f� input�noblock f� of SOME � �� true � NONE �� false�

The end of stream test is equivalent to input returning an empty se

quence�

let val �a��� � input f in �size�a���� � �end�of�stream f� end

Unbu�ered I	O That is� if chunksize� in the underlying reader� then input
operations must be unbu�ered�

let val f � mk�instream�reader�

val �a�f� � input�f�n�

val PrimIO	Rd�chunksize�			��get�instream f

in chunksize�� orelse end�of�stream f

end

Though input may perform a read�k� operation on the reader �for k � �� it
must immediately return all the elements it receives	 However� this does not
hold for partly determined instreams�

let val f � mk�instream�reader�

val � � do�input�operations�on�f�

val �a�f� � input�f�n�

val PrimIO	Rd�chunksize�			��get�instream f

in chunksize�� orelse end�of�stream f �� could be false��

end

because in this case� the stream f may have accumulated a history of several
responses� and input is required to repeat them one at a time	

Similarly� output operations are unbu�ered if chunksize� in the underly

ing writer	 Unbu�ered output means that the data has been written to the
underlying writer by the time output returns	

Don
t bother the reader input must be done without any operation on
the underlying reader� whenever it is possible to do so by using elements from
the bu�er	 This is necessary so that repeated calls to end of �le will not make
repeated system calls	

This rule could be formalized by de�ning a �monitor��

val monitor� reader �� �rd� reader�

chars�read� int ref�

op�count� int ref�

�



and making statements such as�

let val �rd�chars�read�op�count� � monitor�reader�

val f � mk�instream�rd�

val �f�n�elems� � do�things�counting�elements�f�

val p� � getpos�in f

val c� � �chars�read

val ops � �op�count

val � � input f

in not ��n�elems � c�� andalso ��op�count � ops��

end

but perhaps this level of detail is unnecessary	

Multiple end of �le In Unix� and perhaps in other operating systems� there
is no notion of �end of stream	� Instead� by convention a read system call that
returns zero bytes is interpreted to mean end of stream	 However� the next
read to that stream could return more bytes	 This situation would arise if� for
example�

� the user hits cntl
D on an interactive tty stream� and then types more
characters�

� input reaches the end of a disk �le� but then some other process appends
more bytes to the �le	

Consequently� the following is not guaranteed to be true�

let val z � end�of�stream f

val �a�f� � input f

val x � end�of�stream f

in x�z �� not necessarily true� ��

end

The �don�t bother the reader� rule� combined with the de�nition of end of stream�
guarantees that

end�of�stream�f� � end�of�stream�f�	

Implementors should beware that an empty bu�er sometimes means end of
stream� and sometimes not� I found an extra boolean variable necessary to keep
track	

� StreamIO

The functor StreamIO layers a bu�ering system on a primitive IO module�

�



functor StreamIO�structure PrimIO � PRIM�IO

structure Vec� MONO�VECTOR

structure Arr� MONO�ARRAY

val some�elem � PrimIO	elem

sharing type PrimIO	elem � Arr	elem � Vec	elem

sharing type PrimIO	vector�Arr	vector�Vec	vector

sharing type PrimIO	array�Arr	array

� � STREAM�IO � 			

The Vec and Arr structures provide Vector and Array operations for ma

nipulating the vectors and arrays used in PrimIO and StreamIO	 The element
some elem is used to initialize bu�er arrays� any element will do	

If �ush out �nds that it can do only a partial write �i	e	� writea block or
a similar function returns a �number of elements written� less than its �nelems�
argument� then �ush out must adjust its bu�er for the items written and then
raise an Io exception� in such a way that if the next �or any future� �ush out
is successful� no data will have been lost or twice
written	

The same rule applies to output �etc	� if it calls �ush out	
What is the behavior of the Stream IO primitives if a user interrupt occurs�

Reppy thinks that losing information is preferable to printing output twice	 This
should be cogitated and clari�ed	

Implementation notes�
The previous section gives the speci�cation of StreamIO behavior	
Here are some suggestions for e�cient performance�

� Operations on the underlying readers and writers �read block� etc	� are
expected to be expensive �involving a system call� with context switch�	

� Small input operations can be done from a bu�er� the read block or
read nonblock operation of the underlying reader can replenish the bu�er
when necessary	

� Keep the position of the beginning of the bu�er on a multiple
of
chunksize
boundary� and do read or write operations with a multiple
of
chunksize
number of elements	

� For very large input all or input n operations� it is �somewhat� ine�

cient to read one chunksize at a time and then concatenate all the results
together	 Instead� it is good to try to do the read all in one large system
call� that is� read block�n�	 However� in a typical implementation of
read block this requires pre
allocating a vector of size n	 If the user does
input all�� or input n�maxint�� either the size of the vector is not known
a priori or the allocation of a much
too
large bu�er is wasteful	 Therefore�
for large input operations� query the size of the reader using size� subtract
the current position� and try to read that much	 But one should also keep
things rounded to the nearest chunksize	

��



Since size is permitted to be inaccurate�in particular� some implemen

tations may just return ��something reasonable should be done in any
case	

� Similar suggestions apply to very large output operations	 Small out

puts go through a bu�er� the bu�er is written with writea block	 Very
large outputs can be written directly from the argument string using
write block	

� But how should the current bu�er position be remembered� Either a
getpos every time size is called� or a getpos when mk instream is �rst
called� followed by careful maintenance of the position of the beginning
of the bu�er	 �Remember� mk instream might be called only after the
underlying reader has been moved away from the beginning position	�

� A lazy function instream can �should� be implemented as a sequence of
immutable �vector� bu�ers� each with a mutable ref to the next �thing��
which is either another bu�er� the underlying reader� or an indication that
the stream has been truncated	

� The input function should return the largest sequence that is most conve

nient� usually this means �the remaining contents of the current bu�er	�

� To support non
blocking input� use read noblock if it exists� otherwise
do can input followed �if appropriate� by read block	

� To support blocking input� use read block if it exists� otherwise do
read noblock followed �if would block� by block and then another read noblock	

� To support lazy functional streams� reada block and reada noblock
are not useful� they are included only for completeness	

� Setpos in� if setpos
ing forward� might choose to follow the bu�er se

quence� and can perhaps satisfy the setpos request without any underly

ing reader operation	

� Getpos in� in some implementations� can tell the position without a sys

tem call� if it knows the position of the beginning of the bu�er and the
current position within the bu�er	

� writea block should� if necessary� be synthesized fromwrite block� and
vice versa	 Similarly forwritea noblock andwrite noblock� reada noblock
and read noblock� reada block and read block	

�



� IO functor

The precise de�nition of �conventional� streams �IO signature� is in terms of
�lazy functional� streams �STREAM IO�	 The functor IO is provided�

functor IO�structure S � STREAM�IO� � IO � 			

The structures BinIO and TextIO are �presumably� built using separate ap

plications of this functor �though TextIO is then enhanced with std in� etc	��
but users may apply the StreamIO and IO functors to make streams data
types other than char and byte	

The semantics of IO are simple enough that it is su�cient to give a reference
implementation	

functor IO�structure S � STREAM�IO� � IO �

let abstraction I �

struct

structure StreamIO � S

type instream � S�instream ref

type outstream � S�outstream ref

type elem � S�elem

type vector � S�vector

val mk�instream � ref

val get�instream � �

val set�instream � op ��

val mk�outstream � ref

val get�outstream � �

val set�outstream � op ��

val open�in � ref o S�open�in

fun end�of f � if S�end�of�stream f then f else end�of����S�input f��

fun close�in�r as ref f� � �S�close�in f	 r �� end�of f�

fun setpos�in�r as ref f
 i� � r �� S�setpos�in�f
i�

val getpos�in � S�getpos�in o �

fun input�r as ref f� � let val �v
f�� � S�input f in r��f�	 v end

fun input�all�r as ref f� � let val v � S�input�all f

in r �� end�of f	 v end

fun input�noblock�r as ref f� �

let val �v
f�� � S�input�noblock f in r��f�	 v end

fun input��r as ref f� � let val �v
f�� � S�input� f in r��f�	 v end

val end�of�stream � S�end�of�stream o �

fun lookahead�ref f� � ���S�input� f�

val open�out � ref o S�open�out

val close�out � S�close�out o �

fun output�ref f
 v� � S�output�f
v�

fun output��ref f
 x� � S�output��f
x�

val getpos�out � S�getpos�out o �

��



fun setpos�out�ref f
 i� � S�setpos�out�f
i�

val flush�out � S�flush�out o �

end

in I

end

Note that the instream and outstream types are abstract	
Some consequences of this de�nition�
The end of stream semantics are

fun end�of�stream �f as ref ff� � StreamIO	end�of�stream ff

This implies

let val x � end�of�stream f

val y � end�of�stream f

in x�y �� guaranteed true ��

Furthermore� second call to end of stream is guaranteed not to do any sys

tem call� this is a consequence of the �Don�t bother the reader� semantics of
StreamIO�input	

However� reading past end of stream is possible via input� the semantics
may be straightforwardly derived from the semantics of StreamIO�input	

The output operations �which were not lazy functional to begin with� are
even more similar between STREAM IO and IO	 The only purpose of the extra
ref in IO is to allow �output redirection	�

� Random access reading�writing to the same
stream

Instreams are instreams� outstreams are outstreams� and ne�er the twain shall
meet	 At least� not face to face	 However� competent users can construct many
things from the layered functors	

Here�s an example� reading and writing to the same random
access �le with

out re
opening it	

	 Open the �le for reading� and for writing� extract the underlying reader
and writer� discarding the bu�ering layer	

val reader � TextIO	StreamIO	get�reader �TextIO	StreamIO	open�in name�

val writer � TextIO	StreamIO	get�writer �TextIO	StreamIO	open�out name�

�	 Do some bu�ered writes� then discard the bu�ering layer	

��



let val out � TextIO	mk�outstream�TextIO	StreamIO	mk�outstream�writer�name��

in TextIO	setpos�out�out�some�pos��

output�out��Hello ���

output�out��World�n���

flush�out out

end

�	 Do some bu�ered reads� then discard the bu�ering layer	

let val inf � TextIO	mk�instream�TextIO	StreamIO	mk�instream�reader�name��

in TextIO	setpos�in�inf�another�pos��

input inf�

input inf

end

�	 And so on	 It�s cheap and easy to do mk instream whenever switching
between reading and writing	

	 Loose ends

What about opening �les for append�
What about user �and other� interrupts during bu�ered I�O operations�
Should setpos positions be abstract� How should positions work in trans


lated readers or writers�

��


