
Proposed interface for Standard ML Stream I�O

Andrew W� Appel

November ��� ����

� Introduction

The Input�Output interface provides�

� bu�ered reading and writing�

� arbitrary lookahead� using an underlying �lazy streams� mechanism�

� dynamic redirection of input or output�

� random access�

� uniform interface to text and binary data�

� layering of stream translations� through an underlying �reader�writer�
interface�

� unbu�ered input�output� through the reader�writer interface or even through
the bu�ered stream interface�

� primitives su�cient to construct facilities for randomaccess reading�writing
to the same �le	

In addition� the prescriptions and recommendations herein allow for e�cient
implementation� minimizing system calls and memory
memory copying	

The I�O system has several layers of interface	 From bottom to top� they
are

PRIM IO Uniform interface for unbu�ered reading and writing at the �system
call� level� though not necessarily via actual system calls	

STREAM IO Bu�ered �lazy functional stream� input� bu�ered conventional
output	

IO Bu�ered� conventional �side
e�ecting� input and output with redirection
facility	





Because most programmers will use the IO interface� I will describe that
�rst� rather informally	 Then I will go bottom
up over the entire system� giving
a technical speci�cation of the interfaces� and their axioms and pragmatics	��

� IO

Conventional bu�ered input�output is done using several structures matching
the IO signature� TextIO� for character input�output� BinIO� for binary
�byte� input�output	�

signature IO �

sig

type instream

type outstream

type elem

type vector

type pos

val open�in � string �� instream

val close�in � instream �� unit

val input � instream �� vector

val input�all � instream �� vector

val input�noblock � instream �� vector option

val input� � instream �� elem option

val input�n � instream � int �� vector

val end�of�stream � instream �� bool

val lookahead � instream �� elem option

val setpos�in � instream � pos �� unit

val getpos�in � instream �� pos

val endpos�in � instream �� pos

val open�out � string �� outstream

val close�out � outstream �� unit

val output � �outstream � vector� �� unit

val output� � outstream � elem �� unit

val flush�out � outstream �� unit

val getpos�out � outstream �� pos

�All footnotes in this document indicate unresolved issues� Issues should be resolved� and
footnotes removed� by the last draft�

�The conventions for multi�word identi�ers �underscores vs� capitalization� in the initial
basis are still unresolved� Therefore� I have been inconsistent in my punctuation�

�Perhaps it would be better to separate input and output in the the IO modules and
signatures� There seems to be no reason not to do this� except that it means twice as many
modules�

�



val endpos�out � outstream �� pos

val setpos�out � outstream � pos �� unit

structure StreamIO � STREAM�IO

sharing type elem � StreamIO	elem

sharing type vector � StreamIO	vector

sharing type pos � StreamIO	pos

val mk�instream � StreamIO	instream �� instream

val get�instream � instream �� StreamIO	instream

val set�instream � instream � StreamIO	instream �� unit

val mk�outstream � StreamIO	outstream �� outstream

val get�outstream � outstream �� StreamIO	outstream

val set�outstream � outstream � StreamIO	outstream �� unit

end

structure FilePosInt � INTEGER

signature BIN�IO �

sig

include IO

sharing type pos�FilePosInt	int

sharing type StreamIO	elem�Word
	word

sharing type StreamIO	vector�Word
Vector	vector

end

structure BinIO � BIN�IO

signature TEXT�IO �

sig

include IO

sharing type StreamIO	elem � char

sharing type StreamIO	vector � string

sharing type pos�FilePosInt	int

val std�in � instream

val std�out� outstream

val std�err� outstream

val translate�in� BinIO	StreamIO	PrimIO	reader ��

TextIO	StreamIO	PrimIO	reader

val translate�out� BinIO	StreamIO	PrimIO	writer ��

TextIO	StreamIO	PrimIO	writer

end

�



structure TextIO � TEXT�IO

Operations on instreams

elem
A single element �member of a stream�� for TextIO streams this is char�
for BinIO this is Word��word	

vector
A sequence of elements �such as string or Word�Vector�vector�	

f � open in�s�
Opens a �le named s as a stream f 	�

close in�f�
Close f � no further operations are permitted on f �they will raise the Io
exception�	

v � input�f�
Read some elements of f � returning a vector v	 If �and only if� f is at end
of �le� size�v� � �	 May block �not return until data is available in the
external world�	

v � input all�f�
Return the vector v of all the elements of f up to end of stream	

input noblock�f�
If any elements of f can be read without blocking� return at least one of
them	 If it is possible to determine without blocking that f is at end of
stream� return some�empty�	 Otherwise return none	

c � input��f�
If at least one element e of f is available� return some�e�	 If f is at end
of �le� return none	 Otherwise block until one of those conditions occurs	

v � input n�f� n�
If at least n elements remain before end of stream� return the �rst n

elements	 Otherwise� return the �possibly empty� sequence of elements

�The BinIO and TextIO modules� as well as all their substructures� provide general
operations on streams� no matter how these streams are opened� Thus� they are almost
entirely operating�system independent� Putting open in and open out in these modules
introduces an operating�system dependency� It is intended that users or vendors may provide
some structure X matching the IO signature� such a structure may not want to provide any
open in of this form �taking a string argument�� In that case� X�open in should raise an
exception� This is slightly inelegant� Berry and Reppy would like to see open in removed
from the IO signature and put in an operating�system dependent structure such as OS�File�
I put the functions in IO for users� convenience� but I could be convinced to remove them�

�



remaining before end of stream	 Blocks if necessary	 �This was the be

havior of the input function in the ��� De�nition of Standard ML� and
pre
	�� releases of SML�NJ	�

end of stream�f�
False if any characters are available in f � true if f is at end of stream	
Otherwise blocks until one of these conditions occurs	 Exactly equivalent
to �size�input f����	

c � lookahead�f�
Return the next character without advancing the stream� or at end of �le
return none	 Multiple
character lookahead can be accomplished with the
lazy functional stream interface� see section �	

setpos in�f� i�
Seek to position i in f 	 Not always supported �raises Io if not supported
on f��

i � getpos in�f�
Tell the current position of f 	 For the standard modules TextIO and
BinIO� i is an integer equal to the number of elements since the beginning
of the �le	 Positions correspond � to elements in the �le� and are not in
any way abstract	 Not always supported �raises Io if not supported on f��

i � endpos in�f�
Tell the ending position of f 	 For the standard modules TextIO and
BinIO� i is an integer equal to the number of elements in the �le	 Not
always supported �raises Io if not supported on f��

Operations on outstreams

f � open out�s�
Open �for writing� a �le named s �creating it if necessary� as an outstream
f 	

close out�f�
Flush f �s bu�er and close the stream �releasing operating
system resources
associated with it�	

output�f� v�
Write the sequence v to f 	

output��f� x�
Write the element x to f 	

�ush out�f�
Flush f �s bu�er� that is� make the underlying �le re�ect any previous
output operations	

�



i � getpos out�f�
Tell the current position of f �not always supported��

i � endpos out�f�
Tell the ending position of f �not always supported�� For the standard
modules TextIO and BinIO� i is an integer equal to the number of el

ements in the �le	 Not always supported �raises Io if not supported on
f��

setpos out�f� i�
Seek to position i of f �not always supported�� For the standard modules
TextIO and BinIO� i is an integer equal to the number of elements since
the beginning of the �le	 Positions correspond � to elements in the �le�
and are not in any way abstract	

Any of these functions may raise the Io exception if an operation fails �in

cluding close out if a bu�er cannot be �ushed�	

Random access

The getpos� endpos� setpos functions all operate on special FilePosInt in

tegers	 In some implementations these may be ordinary integers� in others they
may be double
precision or even arbitrary precision integers	 Thus� one of the
following is likely to be true�

structure FilePosInt � Int

or structure FilePosInt � LargeInt

This allows operations on extremely large �les	
Users can operate on the pos type using FilePosInt�� and FilePosInt��� or

convert to�from ordinary integers using FilePosInt�toDefaultand FilePosInt�fromDefault�
at the risk of being unable to process large �les	�

Closing �les on program exit

All streams created by TextIO�open in�TextIO�open out�BinIO�open in�
andBinIO�open outwill be closed �the outstreams among them �ushed� when
the ML program exits	 The outstreams std out and std err will be �ushed�
but not closed� on program exit	

�Perhaps we should require that FilePosIntbe abstract� that is� abstraction FilePosInt

� INTEGER � Int� so that programmers are forced to write more portable code�

�



Redirecting IO streams

There is also a set of primitives to relate IO streams to the �lazy functional
streams�model of input�output� and thus to the underlying unbu�ered reader�writer
primitives�

StreamIO
The particular instantiation of the STREAM IO interface underlying
this IO module �i	e	� streams of bytes� chars� or some other element type�	

f �mk instream�s�
Create a conventional stream f from a functional stream s	

s � get instream�f�
Extract the functional stream s from f 	 This allows arbitrary lookahead�
for example�

fun lookahead�n�fn� �

let val f� � mk�instream�get�instream�f��

in input�n�f�n�

end

This makes a �copy� f � of the stream f � then input operations in f �

won�t a�ect f �though setpos in on f � may e�ectively close f�	 For more
details� see the next few sections	

set instream�f� s�
Redirect f � so that further input comes from s	 For example�

fun from�file�gname� �

let val f � open�in name

val save�std�in � get�instream std�in

in set�instream�std�inget�instream f��

g���

set�instream�std�in save�std�in�

end

For more details� see the next few sections	

f �mk outstream�s�
Create a conventional outstream f from a StreamIO�outstream s	 The
output streams in StreamIO are not �functional�� they are conventional
streams operated on by side
e�ecting output	 The di�erence between an
IO�outstream and a StreamIO�outstream is that the former may be
redirected using set outstream	 Think of the former as a ref of the
latter	

�



s � get outstream�f�
Extract the underlying outstream s from the redirectable outstream f 	
Unfortunately� s is not �pure functional�� so there�s no equivalent of the
lookahead trick shown above	 Unlike instreams� if

val f� � mk�outstream�get�outstream f�

then operations on f � are equivalent to operations on f 	

set outstream�f� s�
Useful for redirecting output	 For example�

fun to�file�gname� �

let val f � open�out name

val save�std�out � get�outstream std�out

in set�outstream�std�outget�outstream f��

g���

set�outstream�std�out save�std�out�

end

In can be argued that this is not very elegant� the function g� instead of
writing stu� to std out� should have been parameterized �in the usual
ML way� on an outstream from the very beginning	 Then the get and
set primitives wouldn�t be needed	

Translation

In some environments� the external representation of a text �le is di�erent
from its internal representation� for example� in MS
DOS� text �les on disk
contain CR
LF� and in memory contain only LF at the end of each line	 Bi

nary streams �BinIO�instream� match the external �les byte for byte� text
streams �TextIO�instream� are translated	 Normally� users of TextIO will
not need to know or care about this translation� but for more sophisticated
users� the translation functions are made visible as TextIO�translate in and
TextIO�translate out� On Unix systems� these will be identity func�
tions� See section ��	�

� OS

The primitive I
O �PrimIO�� stream I
O �StreamIO�� and standard
I
O �IO� packages require only these components of the OS structure�

structure OS � sig

type syserror

�



val noError � syserror

exception SysErr of

�ml�op � string

os�op � string

reason � syserror�

end

All �operating system operations not listed here �reading� writing�
etc�� are parametrized �in the PrimIO�reader and PrimIO�writer
types� and may or may not come from the actual operating system�

� PRIM IO

Primitive I
O is at the level of �le descriptors and system calls��

signature PRIM�IO �

sig

type elem

type vector

type array

type pos

exception Io of �

ml�op � string

name � string

os�op � string

reason � string

syserror � OS	syserror

�

datatype reader � Rd of

�read�noblock � �int �� vector option� option

reada�noblock� ��data� array first� int nelems� int� ��

int option� option

read�block � �int �� vector� option

reada�block� ��data� array first� int nelems� int� ��

int� option

block � �unit �� unit� option

can�input � �unit �� bool� option

name � string

chunksize � int

�Perhaps Io shouldn�t be in this signature� where should it live�

�



close � unit �� unit

getpos � �unit �� pos� option

setpos � �pos �� unit� option

endpos � �unit �� pos� option

find�pos � ��data� vector first� int nelems� int��pos

�� pos�� option�

datatype writer � Wr of

�write�noblock� ��data� vector first� int nelems� int� ��

int option� option

writea�noblock� ��data� array first� int nelems� int� ��

int option� option

write�block� ��data� vector first� int nelems� int� ��

int� option

writea�block� ��data� array first� int nelems� int� ��

int� option

block� �unit��unit� option

can�output� �unit��bool� option

name� string

chunksize� int

close� unit �� unit

getpos � �unit��pos� option

setpos � �pos��unit� option

endpos � �unit��pos� option�

val open�in� string �� reader

val open�out� string �� writer

val augment�in � reader �� reader

val augment�out� writer �� writer

end

A �le �device� etc�� is a sequence of �elements �elem�� which may
�for example� be characters or bytes� The distinction between char�
acters and bytes is necessary on DOS� where CR�LF is translated to
LF when reading character �les� or on Windows�NT where characters
are ���bits �Unicode� and bytes are � bits�

One typically reads or writes a sequence of elements in one system
call� this sequence is the vector type� Sometimes it is useful to write
the sequence from a mutable array instead of from the vector�

A reader is a �le �device� etc�� opened for reading� and a writer
one opened for writing�

The components of a reader are

�



close��
Closes the reader �for example� frees operating system resources��
Further operations to this reader are illegal and must be checked
for by the reader �the Io exception must be raised��

name
The name associated with this �le or device� for use in error
messages shown to the user�

chunksize
The recommended �e�cient� size of read operations on this reader�
This is typically to the block size of the operating system�s
bu�ers� If that is not known� a value of ��	� or 	��� will proba�
bly work well� Chunksize �  strongly recommends �but cannot
guarantee� since bu�ering occurs in other modules� not this one�
unbu�ered I
O on this reader� Chunksize � � is illegal�

read noblock�n�
�optional� Reads i elements without blocking� for � � i � n cre�
ating a vector v� returning some�v�� or �if a read would block�
returns none�

read block�n�
�optional� Reads i elements for � � i � n returning a vector v of
length i� blocks �waits� if necessary until at least one element is
available�

reada noblockfbuf�a��rst�i�nelems�ng
�optional� Reads k elements without blocking� for � � k � n into
ai� � � � � ai�k��� returning some�k�� if no elements remain before
end�of��le� returns some��� without blocking� or �if a read would
block� returns none�

reada blockfbuf�a��rst�i�nelems�ng
�optional� Reads k elements for � � k � n into ai� � � � � ai�k���
returning a vector k� blocks �waits� if necessary until at least
one element is available� If no elements reamain before end�of�
�le� returns ��

block��
�optional� Returns only when at least one element is available
for read without blocking�

can input��
�optional� Returns true i� the next read can proceed without
blocking�





getpos��
�optional� Tells the current position in the �le� Useful even for
non�seekable �les� if the endpos function is provided �because
large input operations are more e�cient if the distance from
�here to end of �le is known��

setpos�i�
�optional� Move to position i in �le�

endpos��
�optional� The position at the end of the �le�

�nd pos�fdata � v� �rst � i� nelems � ng� p�
�option� If �nd pos�none� then positions in the reader must
correspond ��� to elements returned from the read functions�
and endpos returns exactly the number of elements in the �le� If
�nd pos�some�f�� then this is not necessarily true� In that case�
f�data � v� �rst � i� nelems � n� p� tells the position of the �i � n�th
element of the vector v� assuming that the position of the ith
element is p� Section ��	 explains why this is useful�

One of read block� reada block� read noblock� or reada noblock
must be provided�

Providing more of the optional functions increases functionality
and
or e�ciency of clients�

�� Absence of all of read block� reada block� and block means that
blocking input is not possible�

�� Absence of all of read noblock� reada noblock� and can input
means that non�blocking input is not possible�

�� Absence of read noblock means that non�blocking input requires
two system calls �using can input� read block��

	� Absence of reada noblock or reada block means that input into
an array requires extra copying� But I do not anticipate that reading
into arrays will normally be very important in the �lazy functional stream�
model�

Clients of PrimIO are required to synthesize blocking reads from
read noblock�block� synthesize vector reads from array reads�
synthesize array reads from vector reads� as needed�so the
PrimIO�reader is required to provide only a minimum set� If
the reader can provide more than the minimum set in a way
that is more e�cient then the obvious synthesis than by all means it
should do so� However� providing more than the minimum by

�



just doing �inside the PrimIO layer� the obvious synthesis is not
recommended� because then clients won�t get the �hint about
which are the e�cient ��recommended� operations�

The augment in function takes a reader r and produces a reader
in which as many as possible of read block� reada block� read noblock�
reada noblock are provided� by synthesizing these from the op�
erations of r�

�� Absence of endpos means that very large inputs �where vectors
must be pre�allocated� cannot be done e�ciently �in one system
call� without copying��

�� Absence of getpos� in the unusual case where a bu�ered system
is applied to a reader not positioned at the beginning of the �le� may
lead to excessive memory allocation of vectors for very large
input operations�

�� Absence of getpos means that bu�ered setpos may be less e��
cient�

�� Absence of setpos prevents random access�

�� If getpos is provided� and pos positions do not correspond ��� to
elements returned from the read functions� then �nd pos must
be provided� This will typically be necessary when the reader is
performing some sort of translation on the input stream� If the
translation function is invertible� then �nd pos will be straight�
forward to implement� If not invertible� then �nd pos can seek
to pos in the underlying �le� and re�translate forward to the right
point� In that case� the implementation of �nd pos will probably
require� p� � getpos� setpos�pos�� read� setpos�p�� to restore the
�le position to what it was before the �nd pos operation�

��� If �nd pos is some�f�� then clients of this reader will probably
do many getpos operations� For e�ciency� if �nd pos�some�f��
the reader should keep track of �le positions� incrementing with
each read� so as to avoid a system call for each getpos operation�

��� Even when �nd pos�none� the reader could keep track of �le
positions to avoid system calls for getpos� It may be the case�
however� that the vast majority of �les are read only sequentially�
so it may not be useful to optimize getpos�

The components of a writer are�

write noblockfbuf�v��rst�i�nelems�ng
This �optional� functionwithout blockingwrites elements vi� � � � � vi�k���

�



for k � n to the output device� and returns some�k�� or �if the
write would block� returns none� k � � is not recommended
�prohibited��� Raises Io on failure of underlying system call� or
Subscript if i � � or i � n � length�v��

writea noblockfbuf�a��rst�i�nelems�ng
This �optional� functionwithout blockingwrites elements ai� � � � � ai�k���
for k � n to the output device� and returns some�k�� or �if the
write would block� returns none� k � � is not recommended
�prohibited���

write blockfbuf�v��rst�i�nelems�ng
This �optional� function writes elements vi� � � � � vi�k��� for � �

k � n to the output device� and returns k� If necessary� waits
�blocks� until the external world can accept at least one element�

writea blockfbuf�a��rst�i�nelems�ng
This �optional� function writes elements ai� � � � � ai�k��� for � �

k � n to the output device� and returns k� If necessary� waits
�blocks� until the external world can accept at least one element�

write noblockfbuf�v��rst�i�nelems�ng
This �optional� function writes elements vi� � � � � vi�k��� for � � k �
n to the output device without blocking� and returns some�k�� or
�if the write would block� returns none�

writea noblockfbuf�a��rst�i�nelems�ng
This �optional� function writes elements vi� � � � � vi�k��� for � � k �
n to the output device without blocking� and returns some�k�� or
�if the write would block� returns none�

block��
This �optional� function does not return until the writer is guar�
anteed to be able to write without blocking�

can output��
�optional� Returns true i� the next write can proceed without
blocking�

name
The name associated with this �le or device� for use in error
messages shown to the user�

chunksize
The recommended �e�cient� size of write operations on this
writer� This is typically to the block size of the operating sys�
tem�s bu�ers� If that is not known� a value of ��	� or 	��� will

�



probably work well� Chunksize �  strongly recommends �but
cannot guarantee� since bu�ering occurs in other modules� not
this one� unbu�ered I
O on the writer� Chunksize � � is illegal
�functions in other modules taking writers as arguments may
raise exceptions��

close��
Closes the writer �for example� frees operating system resources
devoted to this writer�� Further operations to this writer are
illegal and must be checked for by the writer �Io must be raised��

getpos��
�optional� Tells the current position within the �le� Most useful
on seekable writers�

endpos��
�optional� The position at the end of the �le�

setpos�i�
�optional� Moves to position i in the �le� so future writes occur
at this position�

One of write block� writea block� write noblock� or writea noblock
must be provided� Providing more of the optional functions increases
functionality and
or e�ciency of clients�

�� Absence of all of write block� writea block� and block means that
blocking output is not possible�

�� Absence of all of write noblock� writea noblock� and can output
means that non�blocking output is not possible�

�� Absence of write noblock means that non�blocking output re�
quires two system calls �using can output� write block��

	� Absence of writea block or writea noblock means that extra
copying will be required to write from an array�

�� Absence of writea noblock� write noblock� and can output from
a writer means that nonblocking output is impossible� But the
standard StreamIO modules do not support nonblocking output
anyway�

�� Absence of getpos means that bu�ered setpos may be less e��
cient�

�� If pos �� int then bu�ered setpos may be di�cult to implement�
but for �standard modules pos�int

�



�� Absence of setpos prevents random access�

The augment out function takes a writer w and produces a writer
in which as many as possible of write block� writea block� write noblock�
writea noblock are provided� by synthesizing these from the opera�
tions of w�

Any of the component functions of readers or writers may raise the
Io exception� No other exceptions should be raised� The components
of Io are�

ml op
The name of the reader
writer component function raising the
exception�

name
Should equal the name component of the reader or writer�

os op
The name of the operating system call �if any� that failed� oth�
erwise empty�

syserror
If the Io exception is raised as the result of handling an OS�SysErr
exception� then the reason code provided by the operating sys�
tem� Otherwise� OS�noError�

reason
If syserror �� OS�noError� then OS�errorName�syserror�� other�
wise� a textual summary of the error�

The functions open in and open out provide system�default ways
to create readers from ��le names� Structures matching this signa�
ture may leave these two functions unimplemented �by having them
raise the Io exception� if there is no appropriate system default�

� PrimIO

The functor PrimIO builds standard instances of the PRIM IO sig�
nature�

functor PrimIO�structure A � MONO�ARRAY

structure V � MONO�VECTOR

sharing type A	elem�V	elem

val someElem � A	elem

structure Pos � INTEGER� � PRIM�IO �

struct 	 	 	 end

�



The only nontrivial parts of the PrimIO functor are the implemen�
tations of the functions augment in� and augment out� etc� simulate
one kind of reader �or writer� functionality in terms of other kinds�
For example�

fun augment�in �r as Rd r�� �

let reada�to�read reada i �

let val a � A	array�isomeElem�

val i� � f�data�afirst��nelems�i��

in A	extract�a�i��

end

val read�block� �

case r

of Rd�read�block�SOME f			� �� SOME f

� Rd�reada�block�SOME f			� �� SOME�reada�to�read f�

� Rd�read�noblock�SOME fblock�SOME b			� ��

SOME�fn i �� �b��� f i��

� Rd�reada�noblock�SOME f block�SOME b			� ��

SOME�fn i �� �b��� reada�to�read f i��

� � �� NONE

	 	 	

in Rd�block� �block r� 	 	 	 read�block�read�block� 	 	 	 �

end

� STREAM IO

The Stream I
O interface provides bu�ered reading and writing to
input and output streams�

Input streams are treated in the lazy functional style� that is�
input from a stream f yields a �nite vector of elements� plus a new
stream f �� Input from f again will yield the same elements� to advance
within the stream in the usual way it is necessary to do further input
from f �� This interface allows arbitrary lookahead to be done very
cleanly� which should be useful both for ad hoc lexical analysis and for
table�driven� regular�expression�based lexing�

Output streams are handled more conventionally� since the lazy
functional style doesn�t seem to make sense for output�

signature STREAM�IO �

sig

structure PrimIO� PRIM�IO

type elem sharing type elem � PrimIO	elem

�



type vector sharing type vector � PrimIO	vector

type pos sharing type pos � PrimIO	pos

type instream

type outstream

val open�in � string �� instream

val mk�instream � PrimIO	reader �� instream

val close�in � instream �� unit

val setpos�in � instream � pos �� instream

val getpos�in � instream �� pos

val endpos�in � instream �� pos

val input � instream �� vector � instream

val input�all � instream �� vector

val input�noblock � instream �� �vector � instream� option

val input� � instream �� elem option � instream

val input�n � instream � int �� vector � instream

val end�of�stream � instream �� bool

val get�reader � instream �� PrimIO	reader

val open�out� string �� outstream

val mk�outstream � PrimIO	writer �� outstream

val close�out � outstream �� unit

val output � �outstream � vector� �� unit

val output� � �outstream � elem� �� unit

val flush�out � outstream �� unit

val getpos�out � outstream �� pos

val setpos�out � outstream � pos �� unit

val endpos�out � outstream �� pos

val get�writer� outstream �� PrimIO	writer

end

Each instream f can be viewed as a sequence of �available el�
ements �the bu�er or sequence of bu�ers� and a mechanism �the
reader� for obtaining more� After an operation �v� f �� � input�f� it is
guaranteed that v is a pre�x of the available elements� In a �trun�
cated instream� there is no mechanism for obtaining more� so the
�available elements comprise the entire stream� In a �terminated
outstream� there is no mechanism for outputting more� so any output
operations will raise the Io exception�

PrimIO
Every instance of STREAM IO is built over an instance of PRIM IO�

�



elem
A single element �member of a stream��

vector
A sequence of elements� just as in PRIM IO�

f � open in�s�
Opens a �le named s as a stream f � �Default implementa�
tions of STREAM IO will support open in� other implementa�
tions may choose to support only mk instream� raising Io on
open in�

f �mk instream�r�
Create a bu�ered stream f from a reader r� In r� read block�
reada block� and block must not all be none or an Io exception
will be raised� �Most users will normally use open in instead��

close in�f�
Truncate f � and release operating system resources associated
with the underlying �le �if any��

g � setpos in�f� i�
Now g is a new instream starting from position i of f � f may or
may not be truncated� depending on whether the setpos request
can be satis�ed within the bu�er� �Nondeterministic behavior�
is that bad�� Not always supported�

getpos in�f�
Return the current position of f � Not always supported�

endpos in�f�
Return the position at end of �le of f � Not always supported�

�v� f �� � input�f�
If any elements of f are available� return sequence v of one or
more elements and the �remainder f � of the stream� If f is at
end of �le� return the empty sequence� Otherwise read from the
operating system �whichmay block� until one of those conditions
occurs�

v � input all�f�
Return the vector v of all the elements of f up to end of stream�
Semantically equivalent to�

fun input�all�f� � let val �af�� � input f

in if size�a��� then a

else a � input�all f�

end

�



where � is the concatenation operator on element vectors�

�v� f �� � input noblock�f�
If any non�empty sequence v of f is available or can be read from
the operating system without blocking� return some�w� f �� where
w is any non�empty pre�x of v� and f � is the �rest of the stream�
Otherwise return none�

�c� f �� � input��f�
If at least one element e of f is available� return �some�e�� f ���
If f is at end of �le� return the none� Otherwise read from the
operating system �whichmay block� until one of those conditions
occurs� Semantically equivalent to�

fun input��f� � let val �vf�� � input f

in �if size�v��� then NONE else SOME�sub�v���

f��

end

�v� f �� � input n�f� n�
If at least n elements remain before end of stream� return the
�rst n elements� Otherwise� return the �possibly empty� se�
quence of elements remaining before end of stream� Blocks if
necessary� �This was the behavior of the input function in the
���� De�nition of Standard ML�� Semantically equivalent to�

fun input�n�f�� � �empty f�

� input�n�fn� � let val �xf�� � input� f

val �sf��� � input�n�fn���

in �x�s f���

end

end of stream�f�
False if any characters are available in f � true if f is at end of
stream� Otherwise reads �perhaps blocking� until one of these
conditions occurs� Exactly equivalent to �size�input f�����

get reader�f�
Extract the underlying reader from f � Truncates f � Careful
users should probably do something like

let val r � get�reader f

val v � input�all f

in 			

end

��



so as to obtain the elements v already in the bu�er before doing
anything with r�

f � open out�s�
Open �for writing� a �le named s �creating it if necessary� as an
outstream f � Not always supported�

f �mk outstream�w� s�
Create a bu�ered outstream f from a writer w� In w� write block�
writea block� and block must not all be none or an Io exception
will be raised�

close out�f�
Flush f �s bu�er� terminate f � then close the underlying writer
�releasing operating�system resources associated with it��

�ush out�f�
Flush f �s bu�er� that is� make the underlying �le re�ect any
previous output operations�

output�f� v�
Write the sequence v to f � this may block until the system is
prepared to accept more output� StreamIO does not provide
any nonblocking output function�

output��f� x�
Write the element x to f � may block�

get writer�f�
Get the underlying writer associated with f � Flushes and ter�
minates f �

getpos out�f�
Give the current position of f in the underlying �le� Not always
supported�

endpos out�f�
The position at the end of �le f � Not always supported�

setpos out�f� i�
Set the current position of f in the underlying �le to i� Flush f

if necessary� Not always supported�

�



Any pre�x of the concatenation of previous writes �since the last
setpos or �ush� may be re�ected in the underlying �le�

Operationsmarked Not always supportedmay fail on some streams or
in some instantiations of the STREAM IO signature� raising Iofsyserror �
OS�noError� � � �g��

Rules� The following expressions are all guaranteed true� if they
complete without exception�

Input is semi�deterministic� input may read any number of ele�
ments from f the ��rst time� but then it is committed to its choice�
and must return the same number of elements on subsequent reads
from the same point�

let val �a�� � input f

val �b�� � input f

in a�b

end

Closing a stream just causes the not�yet�determined part of the
stream to be empty�

let val �af�� � input f

val � � close�in f

val �b�� � input f

in a�b andalso end�of�stream f�

end �� must be true ��

If a stream has already been at least partly determined� then input
cannot possibly block�

let val a � input f

in case input�noblock f

of SOME a �� a�b

� NONE �� false

end �� must be true ��

Note that a successful input noblock does not imply that more char�
acters remain before end�of��le� just that reading won�t block�

A freshly opened stream is still undetermined �no �read has yet
been done on the underlying reader��

let val a � open�in name �� or a � mk�instream�r� ��

in close a�

size�input a� � �

end

�Should we make a special OS�notSupported�

��



This has the useful consequence that if one opens a stream� then
extracts the underlying reader� the reader has not yet been advanced
in its �le�

Closing a stream guarantees that the underlying reader will never
again be accessed� so input can�t possibly block�

�case �close f� input�noblock f� of SOME � �� true � NONE �� false�

The end of stream test is equivalent to input returning an empty
sequence�

let val �a�� � input f in �size�a���� � �end�of�stream f� end

Unbu�ered I
O That is� if chunksize�� in the underlying reader�
then input operations must be unbu�ered�

let val f � mk�instream�reader�

val �af�� � input�fn�

val PrimIO	Rd�chunksize			��get�instream f

in chunksize�� orelse end�of�stream f�

end

Though input may perform a read�k� operation on the reader �for k �
�� it must immediately return all the elements it receives� However�
this does not hold for partly determined instreams�

let val f � mk�instream�reader�

val � � do�input�operations�on�f�

val �af�� � input�fn�

val PrimIO	Rd�chunksize			��get�instream f

in chunksize�� orelse end�of�stream f� �� could be false��

end

because in this case� the stream f may have accumulated a history
of several responses� and input is required to repeat them one at a
time�

Similarly� output operations are unbu�ered if chunksize�� in the
underlying writer� Unbu�ered output means that the data has been
written to the underlying writer by the time output returns�

Don�t bother the reader input must be done without any operation
on the underlying reader� whenever it is possible to do so by using
elements from the bu�er� This is necessary so that repeated calls to
end of �le will not make repeated system calls�

This rule could be formalized by de�ning a �monitor�

��



val monitor� reader �� �rd� reader

chars�read� int ref

op�count� int ref�

and making statements such as�

let val �rdchars�readop�count� � monitor�reader�

val f � mk�instream�rd�

val �f�n�elems� � do�things�counting�elements�f�

val p� � getpos�in f�

val c� � �chars�read

val ops � �op�count

val � � input f�

in not ��n�elems � c�� andalso ��op�count � ops��

end

but perhaps this level of detail is unnecessary�

Multiple end�of��le In Unix� and perhaps in other operating sys�
tems� there is no notion of �end of stream� Instead� by convention
a read system call that returns zero bytes is interpreted to mean end
of stream� However� the next read to that stream could return more
bytes� This situation would arise if� for example�

� the user hits cntl�D on an interactive tty stream� and then types
more characters�

� input reaches the end of a disk �le� but then some other process
appends more bytes to the �le�

Consequently� the following is not guaranteed to be true�

let val z � end�of�stream f

val �af�� � input f

val x � end�of�stream f�

in x�z �� not necessarily true� ��

end

The �don�t bother the reader rule� combined with the de�nition of
end of stream� guarantees that

end�of�stream�f� � end�of�stream�f�	

Implementors should beware that an empty bu�er sometimes means
end of stream� and sometimes not� I found an extra boolean variable
necessary to keep track�

��



� StreamIO

The functor StreamIO layers a bu�ering system on a primitive IO
module�

functor StreamIO�structure PrimIO � PRIM�IO

structure Vec� MONO�VECTOR

structure Arr� MONO�ARRAY

val some�elem � PrimIO	elem

sharing type PrimIO	elem � Arr	elem � Vec	elem

sharing type PrimIO	vector�Arr	vector�Vec	vector

sharing type PrimIO	array�Arr	array

sharing type PrimIO	pos�FilePosInt	int

� � STREAM�IO � 			

The Vec and Arr structures provide Vector and Array opera�
tions for manipulating the vectors and arrays used in PrimIO and
StreamIO� The element some elem is used to initialize bu�er arrays�
any element will do�

If �ush out �nds that it can do only a partial write �i�e�� writea block
or a similar function returns a �number of elements written less than
its �nelems argument� then �ush out must adjust its bu�er for the
items written and then try again� If the �rst or any successive write
attempt returns zero elements written �or raises an exception� then
�ush out raises an Io exception�

What is the behavior of the Stream IO primitives if a user inter�
rupt occurs� Reppy thinks that losing information is preferable to
printing output twice� This should be cogitated and clari�ed�

Implementation notes�
The previous section gives the speci�cation of StreamIO behavior�
With bu�ered reading� a getpos operation on the instream may

be done in the middle of a bu�er� If �nd pos is none in the underly�
ing reader� then the StreamIO�getpos can be implemented by asking
the current position �of the end of the bu�er� and then subtracting�
But �nd pos is some�f�� then the subtraction won�t work� because
elements don�t correspond ��� to positions� In that case� it will be
necessary to call �nd pos� this in turn requires the position at the
beginning of the bu�er� But this means that the StreamIO system
must do a getpos just before reading each new bu�er� and remember
the bu�er position�	 �This is not necessary if �nd pos�none��

Here are some suggestions for e�cient performance�

�This is rather unfortunate�

��



� Operations on the underlying readers and writers �read block�
etc�� are expected to be expensive �involving a system call� with
context switch��

� Small input operations can be done from a bu�er� the read block
or read noblock operation of the underlying reader can replenish
the bu�er when necessary�

� Each readermay provide only a subset of read block� read noblock�
block� can input� etc� An augmented reader that provides more
operations that can be constructed using PrimIO�augment in�
but it may be more e�cient to use the functions directly pro�
vided by the reader� instead of relying on the constructed ones�
The same applies to augmented writers�

� Keep the position of the beginning of the bu�er on a multiple�
of�chunksize boundary� and do read or write operations with a
multiple�of�chunksize number of elements�

� For very large input all or input n operations� it is �somewhat�
ine�cient to read one chunksize at a time and then concatenate
all the results together� Instead� it is good to try to do the read
all in one large system call� that is� read block�n�� However� in a
typical implementation of read block this requires pre�allocating
a vector of size n� If the user does input all�� or input n�maxint��
either the size of the vector is not known a priori or the allocation
of a much�too�large bu�er is wasteful� Therefore� for large input
operations� query the size of the reader using endpos� subtract
the current position� and try to read that much� But one should
also keep things rounded to the nearest chunksize�

� The use of endpos to try to do �large� read operations of just
the right size will be inaccurate if �nd pos�some� But this in�
accuracy can be tolerated� if the translation is anything close to
���� endpos will still provide a very good hint about the order�
of�magnitude size of the �le�

� Similar suggestions apply to very large output operations� Small
outputs go through a bu�er� the bu�er is writtenwith writea block�
Very large outputs can be written directly from the argument
string using write block�

� But how should the current bu�er position be remembered� Ei�
ther a getpos every time endpos is called� or a getpos when
mk instream is �rst called� followed by careful maintenance of
the positionof the beginningof the bu�er� �Remember� mk instream

��



might be called only after the underlying reader has been moved
away from the beginning position��

� A lazy functional instream can �should� be implemented as a se�
quence of immutable �vector� bu�ers� each with a mutable ref to
the next �thing� which is either another bu�er� the underlying
reader� or an indication that the stream has been truncated�

� The input function should return the largest sequence that is
most convenient� usually this means �the remaining contents of
the current bu�er�

� To support non�blocking input� use read noblock if it exists� oth�
erwise do can input followed �if appropriate� by read block�

� To support blocking input� use read block if it exists� otherwise
do read noblock followed �if would block� by block and then
another read noblock�

� To support lazy functional streams� reada block and reada noblock
are not useful� they are included only for completeness�

� Setpos in� if setpos�ing forward� might choose to follow the bu�er
sequence� and can perhaps satisfy the setpos request without any
underlying reader operation�

� Getpos in� in some implementations� can tell the position with�
out a system call� if it knows the position of the beginning of the
bu�er and the current position within the bu�er�

� writea block should� if necessary� be synthesized from write block�
and vice versa� Similarly for writea noblock and write noblock�
reada noblock and read noblock� reada block and read block�

� IO functor

The precise de�nition of �conventional streams �IO signature� is in
terms of �lazy functional streams �STREAM IO�� The functor IO is
provided�

functor IO�structure S � STREAM�IO� � IO � 			

The structures BinIO and TextIO are �presumably� built using sep�
arate applications of this functor �though TextIO is then enhanced
with std in� etc��� but users may apply the StreamIO and IO functors
to make streams data types other than char and byte�

The semantics of IO are simple enough that it is su�cient to give
a reference implementation�

��



functor IO�structure S � STREAM�IO� � IO �

let abstraction I �

struct

structure StreamIO � S

type instream � S�instream ref

type outstream � S�outstream ref

type elem � S�elem

type vector � S�vector

type pos � S�pos

val mk�instream � ref

val get�instream � �

val set�instream � op ��

val mk�outstream � ref

val get�outstream � �

val set�outstream � op ��

val open�in � ref o S�open�in

fun end�of f � if S�end�of�stream f then f else end�of����S�input f��

fun close�in�r as ref f� � �S�close�in f	 r �� end�of f�

fun setpos�in�r as ref f
 i� � r �� S�setpos�in�f
i�

val getpos�in � S�getpos�in o �

val endpos�in � S�endpos�in o �

fun input�r as ref f� � let val �v
f�� � S�input f in r��f�	 v end

fun input�all�r as ref f� � let val v � S�input�all f

in r �� end�of f	 v end

fun input�noblock�r as ref f� �

let val �v
f�� � S�input�noblock f in r��f�	 v end

fun input��r as ref f� � let val �v
f�� � S�input� f in r��f�	 v end

val end�of�stream � S�end�of�stream o �

fun lookahead�ref f� � ���S�input� f�

val open�out � ref o S�open�out

val close�out � S�close�out o �

fun output�ref f
 v� � S�output�f
v�

fun output��ref f
 x� � S�output��f
x�

val getpos�out � S�getpos�out o �

val endpos�out � S�endpos�out o �

fun setpos�out�ref f
 i� � S�setpos�out�f
i�

val flush�out � S�flush�out o �

end

in I

end

Note that the instream and outstream types are abstract�
Some consequences of this de�nition�
The end of stream semantics are

fun end�of�stream �f as ref ff� � StreamIO	end�of�stream ff

��



This implies

let val x � end�of�stream f

val y � end�of�stream f

in x�y �� guaranteed true ��

Furthermore� second call to end of stream is guaranteed not to do any
system call� this is a consequence of the �Don�t bother the reader
semantics of StreamIO�input�

However� reading past end of stream is possible via input� the
semantics may be straightforwardly derived from the semantics of
StreamIO�input�

The output operations �which were not lazy functional to begin
with� are even more similar between STREAM IO and IO� The only
purpose of the extra ref in IO is to allow �output redirection�

� Application Notes

��� Random access reading�writing to the same stream

Instreams are instreams� outstreams are outstreams� and ne�er the
twain shall meet� At least� not face to face� However� competent
users can construct many things from the layered functors�

Here�s an example� reading and writing to the same random�access
�le without re�opening it�


�� Open the �le for reading� and for writing� extract the underlying
reader and writer� discarding the bu�ering layer�

val reader � TextIO	StreamIO	get�reader �TextIO	StreamIO	open�in name�

val writer � TextIO	StreamIO	get�writer �TextIO	StreamIO	open�out name�

�� Do some bu�ered writes� then discard the bu�ering layer�

let val out � TextIO	mk�outstream�TextIO	StreamIO	mk�outstream�writer��

in TextIO	setpos�out�outsome�pos��

output�out�Hello ���

output�out�World�n���

flush�out out

end

�The example here uses two �le descriptors on the same �le� This works �ne on Unix� I�m
not sure about other operating systems� Perhaps we should have a PrimIO�open in out

function that produces a reader and a writer sharing a �le descriptor �as a supplement to
PrimIO�open in and PrimIO�open out�� Or perhaps this function should be in some
nonstandard module� it doesn�t have to live inside the PrimIO module�

��



�� Do some bu�ered reads� then discard the bu�ering layer�

let val inf � TextIO	mk�instream�TextIO	StreamIO	mk�instream�reader��

in TextIO	setpos�in�infanother�pos��

input inf�

input inf

end

	� And so on� It�s cheap and easy to do mk instream whenever
switching between reading and writing�

��� Other reader�writer devices

The functions open in and open out provide system�default ways to
create readers from ��le names�

SML implementations are likely to provide other ways to create
readers and writers� For example�

structure Socket �

sig type socket�name

structure P � TextIO	StreamIO	PrimIO

val open�socket�text�reader� socket�name �� P	reader

val open�bidirectional�socket� socket�name ��

P	reader � P	writer

	 	 	

end

Then the user could bu�er these readers by using mk instream�
Alternatively� a Socket interface could provide the high�level in�

stream�

structure Socket �

sig type socket�name

val open�socket�text�in� socket�name �� TextIO	instream

val open�bidirectional�socket� socket�name ��

TextIO	instream � TextIO	outstream

	 	 	

end

and the user could extract the reader by using get instream and
get reader�

Some operating systems have a notion of open for append� this
di�ers from open out followed by setpos�endpos�f�� in that if other
processes are also appending to the �le� each successive write has an
implicit setpos to end of �le� An operating�system support module
could provide a way to create an appending writer���

�	Or should this be a standard feature of TextIO�

��



��� String readers�writers

A useful kind of reader
writer is an internal text queue� not using
any devices at all�

local

fun prim�pipe�� � TextIO	StreamIO	PrimIO	reader �

TextIO	StreamIO	PrimIO	writer �

	 	 	

in

fun pipe�� � instream � outstream �

�� layer mk�instream and mk�outstream on

components of prim�pipe�� ��

end

It would be natural to provide such functions in a library�
Here�s an even simpler example�

fun string�reader�source � string� � TextIO	StreamIO	PrimIO	reader �

let val pos � ref �

fun read n � let val p � �pos

val m � min�n size source � p�

in pos �� p�m� substring�sourcepm�

end

Rd�read�noblock � SOME�fn n �� SOME�read n��

reada�noblock � NONE

read�block � SOME�read�

reada�block� NONE

block � SOME�fn�������

can�input � SOME�fn����true�

name���string��

chunksize�size source

close�fn������

getpos�SOME�fn�����pos�

setpos�SOME�fn k �� if ���k andalso k �� size source then pos��k

else raise Io�ml�op��setpos�name���string��os�op���

reason��position out of bounds�

syserror�OS	noError��

endpos�SOME�fn����size source��

end

val open�string � string �� instream �

TextIO	mk�instream o TextIO	StreamIO	mk�instream o string�reader

�



��� Translated readers

Sometimes one wants to apply a translation function to a stream� For
example� one might want to translate CR�LF to LF on input� or trans�
lated escape�coded ASCII into Unicode� I shall discuss translated
input streams �readers� here� but the same ideas apply to translated
output streams �writers��

Since anyone is allowed to counterfeit a reader� it is easy to write
a translation function on readers�

fun translate� �source� TextIO	PrimIO	reader� � TextIO	PrimIO	reader

or

fun translate� �source� BinIO	PrimIO	reader� � TextIO	PrimIO	reader

Here�s an example�

fun remove�CR�rd� as TextIO	StreamIO	PrimIO	Rd rd� �

TextIO	StreamIO	PrimIO	reader �

let fun charCR��������� � ��

� charCR c � implode c

fun stringCR s � concat�mapChar charCR �s�size s��

fun option f NONE � NONE

� option f �SOME x� � SOME�f x�

fun retranslate���pos� � pos

� retranslate�readnelemspos� �

let val s � read nelems

val len � size s

fun loop�inp� � if i�s then retranslate�readnp�

else if n�� then p

else if CharVector	sub�si�� �������

then loop�i��np�

else loop�i��n��p�

in loop��nelemspos�

end

in TextIO	StreamIO	PrimIO	Rd�

read�noblock � option �fn get �� option stringCR o get�

��read�noblock rd�

reada�noblock � �� etc	 ��

read�block � option �fn get �� stringCR o get� ��read�block rd�

reada�block� �� etc	 ��

block � �block rd

can�input � �can�input rd

name� �name rd

chunksize� �chunksize rd

close� �close rd

��



getpos��getpos rd

setpos��setpos rd

endpos��endpos rd

find�pos� �case ��getpos rd �setpos rd

TextIO	StreamIO	PrimIO	augment�in rd��

of �SOME get SOME set

TextIO	StreamIO	PrimIO	Rd�read�block�readb			�� ��

SOME�fn ��datafirstnelems�pos���

let val p� � get��

val p� � �set�pos��

retranslate�readbnelemspos��

in set�p��� p�

end�

� � �� NONE��

end

Note that the positions in this translated reader �and thus in the
translated stream� do not correspond ��� to positions in the underly�
ing reader� Thus� either �nd pos must be provided� or getpos� setpos�
and endpos must not be provided� Here we have chosen to provide
�nd pos whenever possible� Because the translation is not invertible
�we don�t know where the CR characters might have been�� �nd pos
must re�read the original stream�

Users who need to do random access on translated streams might
alse use a solution similar to the one in section ���� do setpos on
the underlying� untranslated reader� Then� after each setpos� apply
afresh the translation function �such as remove CR and then apply a
new bu�er �via mk instream��

��� Abstract positions

In applications where one wants seekable� translated readers with
�moded escapes it is di�cult represent positions as integers� This
will happen if escape characters semi�permanently change the trans�
lation state of a stream� rather than a�ecting just the next character�

In such a case� one might want to have an abstract data type posi�
tion� perhaps with a total ordering but without a mapping to integers�

One way to accomplish this is to make a new structure matching
the PRIM IO signature�

abstraction MyPrimIO � PRIM�IO �

sig type pos � string �� or whatever ��

datatype reader � Rd of 				

��



			

end

Now one can write translated readers that can deal with translated
positions more �exibly� since there�s no ��� correspondence property
that must be maintained�

The only problem is that the standard StreamIO functor cannot
be applied� because the sharing constraint type pos�int is violated���

The user can write his own bu�ering functor�

functor MyStreamIO�structure PrimIO � PRIM�IO 			

�� not sharing type PrimIO	pos�int ��

� � STREAM�IO � struct 			 end

structure MyIO � MyStreamIO�structure PrimIO � MyPrimIO 			�

NowMyIO�instream is a di�erent type than TextIO�StreamIO�instream�
If one didn�t rely on pos�int� then one could still make use of the
MyIO interface�

functor MyApplication�IO � STREAM�IO� � struct 			 end

Also� it is possible to write a function to translate a MyPrimIO�reader
into an ordinary PrimIO�reader �but with setpos disabled��

fun standardize �MyPrimIO	Rd rd� �

TextIO	StreamIO	PrimIO	Rd�

read�noblock � �read�noblock rd

reada�noblock � �reada�noblock rd

read�block � �read�block rd

reada�block� �reada�block rd

block � �block rd

can�input � �can�input rd

name� �name rd

chunksize� �chunksize rd

close� �close rd

getpos�NONE

setpos�NONE

endpos�NONE�

��The sharing of pos	FilePosInt�int is useful to clients of StreamIO� Perhaps it is not
necessary for the internals of the functor� If that were the case� then it would not be necessary
to de�ne the functorMyStreamIO� because functor StreamIO could be used� But MyIO

would still be incompatible with TextIO�StreamIO�

��



��	 Lexical analysis

Lexical analyzers need to process their input e�ciently� and often
need some amount of lookahead� Line�oriented applications need to
read one line of text at a time� e�ciently� Both of these applications
can make e�ective use of lazy�stream input�

Consider the implementation of an input line function� that reads
up to the next newline character� A naive implementationwould read
characters� then concatenate them�

fun input�line �f� TextIO	instream� �

let fun loop �� � case input� f

of SOME����n�� �� ���n�

� SOME c �� c �� loop��

� NONE �� nil

in implode �loop���

end

Now� we may wish to avoid all the list construction and implode call���

Thus�

fun input�line �f� TextIO	instream� �

let val g� � TextIO	get�instream f

fun loop�ig� � case input� g

of �SOME����n���� �� i��

� �SOME c g�� �� loop�i��g��

� �NONE�� �� i

in TextIO	input�n�loop��g���

end

This has the e�ect of looking through the input bu�er for a newline
character� then extracting just the right�length string from the input
bu�er� but it�s all done abstractly�

There are no list constructions� and only one string copy� the
extract implied by the input n call��� On the other hand� there is
a function call for each character� I do not see this as a problem�
We expect ML programs �or� in fact programs in any language� to
implement abstract data types via a function�call interface� if this
becomes a source of ine�ciency� perhaps the solution is for compilers
to implement cheaper function calls�

��Is this still called implode in the new basis�
��There is some building of SOME constructors� We must still discuss whether input


should return a char option� or just return a char with exception on end of �le� But that�s a
separate issue� However� in the input line function I show here� raising the exception leads
to natural� e�cient behavior if we also change the semantics of input line to say that an
exception should be raised if the last line of the �le does not end with a newline character�

��



A very similar approach works for lexical analyzers which do more
general �perhapsmulti�character� lookahead� First scan the lazy stream
to determine the length of the token� then use input n to extract it
and advance the stream�

�	 Loose ends

What about opening �les for append�
What about user �and other� interrupts during bu�ered I
O op�

erations�

��


