
Proposed interface for Standard ML Stream I�O

Andrew W� Appel

January ��� ����

� Introduction

The Input�Output interface provides�

� bu�ered reading and writing�

� arbitrary lookahead� using an underlying �lazy streams� mechanism�

� dynamic redirection of input or output�

� random access�

� uniform interface to text and binary data�

� layering of stream translations� through an underlying �reader�writer� interface�

� unbu�ered input�output� through the reader�writer interface or even through the
bu�ered stream interface�

� primitives su�cient to construct facilities for random access reading�writing to the
same �le	

In addition� the prescriptions and recommendations herein allow for e�cient implementa

tion� minimizing system calls and memory
memory copying	

The I�O system has several layers of interface	 From bottom to top� they are

PRIM IO Uniform interface for unbu�ered reading and writing at the �system call� level�
though not necessarily via actual system calls	

STREAM IO Bu�ered �lazy functional stream� input� bu�ered conventional output	

IO Bu�ered� conventional �side
e�ecting� input and output with redirection facility	

Because most programmers will use the IO interface� I will describe that �rst� rather
informally	 Then I will go bottom
up over the entire system� giving a technical speci�cation
of the interfaces� and their axioms and pragmatics	��

�All footnotes in this document indicate unresolved issues� Issues should be resolved� and footnotes
removed� by the last draft�

�The conventions for multi�word identi�ers �underscores vs� capitalization� in the initial basis are still
unresolved� Therefore� I have been inconsistent in my punctuation�






� IO

Conventional bu�ered input�output is done using several structures matching the IO sig

nature� TextIO� for character input�output� BinIO� for binary �byte� input�output	�

signature IO �

sig

type instream

type outstream

type elem

type vector

type pos

val open�in � string �� instream

val close�in � instream �� unit

val input � instream �� vector

val input�all � instream �� vector

val input�noblock � instream �� vector option

val input� � instream �� elem option

val input�n � instream � int �� vector

val end�of�stream � instream �� bool

val lookahead � instream �� elem option

val setpos�in � instream � pos �� unit

val getpos�in � instream �� pos

val endpos�in � instream �� pos

val open�out � string �� outstream

val close�out � outstream �� unit

val output � �outstream � vector� �� unit

val output� � outstream � elem �� unit

val flush�out � outstream �� unit

val getpos�out � outstream �� pos

val endpos�out � outstream �� pos

val setpos�out � outstream � pos �� unit

structure StreamIO � STREAM�IO

sharing type elem � StreamIO	elem

sharing type vector � StreamIO	vector

sharing type pos � StreamIO	pos

val mk�instream � StreamIO	instream �� instream

val get�instream � instream �� StreamIO	instream

val set�instream � instream � StreamIO	instream �� unit

val mk�outstream � StreamIO	outstream �� outstream

val get�outstream � outstream �� StreamIO	outstream

�Perhaps it would be better to separate input and output in the the IO modules and signatures� There
seems to be no reason not to do this� except that it means twice as many modules�

�



val set�outstream � outstream � StreamIO	outstream �� unit

end

structure FilePosInt � INTEGER

signature BIN�IO �

sig

include IO

sharing type pos�FilePosInt	int

sharing type StreamIO	elem�Word
	word

sharing type StreamIO	vector�Word
Vector	vector

end

structure BinIO � BIN�IO

signature TEXT�IO �

sig

include IO

sharing type StreamIO	elem � char

sharing type StreamIO	vector � string

sharing type pos�FilePosInt	int

val std�in � instream

val std�out� outstream

val std�err� outstream

val translate�in� BinIO	StreamIO	PrimIO	reader ��

TextIO	StreamIO	PrimIO	reader

val translate�out� BinIO	StreamIO	PrimIO	writer ��

TextIO	StreamIO	PrimIO	writer

end

structure TextIO � TEXT�IO

Operations on instreams

elem

A single element �member of a stream�� for TextIO streams this is char� for BinIO
this is Word��word	

vector
A sequence of elements �such as string or Word�Vector�vector�	

f � open in�s�
Opens a �le named s as a stream f 	�

�The BinIO and TextIO modules� as well as all their substructures� provide general operations on
streams� no matter how these streams are opened� Thus� they are almost entirely operating�system indepen�
dent� Putting open in and open out in these modules introduces an operating�system dependency� It is
intended that users or vendors may provide some structure X matching the IO signature� such a structure
may not want to provide any open in of this form �taking a string argument�� In that case� X�open in

�



close in�f�

Close f � no further operations are permitted on f �they will raise the Io exception�	

v � input�f�
Read some elements of f � returning a vector v	 If �and only if� f is at end of �le�
size�v� � �	 May block �not return until data is available in the external world�	

v � input all�f�
Return the vector v of all the elements of f up to end of stream	

input noblock�f�
If any elements of f can be read without blocking� return at least one of them	 If it is
possible to determine without blocking that f is at end of stream� return some�empty�	
Otherwise return none	

c � input��f�
If at least one element e of f is available� return some�e�	 If f is at end of �le� return
none	 Otherwise block until one of those conditions occurs	

v � input n�f� n�
If at least n elements remain before end of stream� return the �rst n elements	 Oth

erwise� return the �possibly empty� sequence of elements remaining before end of
stream	 Blocks if necessary	 �This was the behavior of the input function in the 
���
De�nition of Standard ML� and pre

	�� releases of SML�NJ	�

end of stream�f�
False if any elements are available in f � true if f is at end of stream	 Otherwise blocks
until one of these conditions occurs	 Exactly equivalent to �size�input f����	

c � lookahead�f�
Return the next element without advancing the stream� or at end of �le return none	
Multiple
character lookahead can be accomplished with the lazy functional stream
interface� see section �	

setpos in�f� i�
Seek to position i in f 	 Not always supported �raises Io if not supported on f��

i � getpos in�f�
Tell the current position of f 	 For the standard modules TextIO and BinIO� i is
an integer equal to the number of elements since the beginning of the �le	 Positions
correspond 
�
 to elements in the �le� and are not in any way abstract	 Not always
supported �raises Io if not supported on f��

i � endpos in�f�
Tell the ending position of f 	 For the standard modules TextIO and BinIO� i is an
integer equal to the number of elements in the �le	 Not always supported �raises Io if
not supported on f��

should raise an exception� This is slightly inelegant� Berry and Reppy would like to see open in removed
from the IO signature and put in an operating�system dependent structure such as OS�File� I put the
functions in IO for users� convenience� but I could be convinced to remove them�

�



Operations on outstreams

f � open out�s�
Open �for writing� a �le named s �creating it if necessary� as an outstream f 	

close out�f�
Flush f �s bu�er and close the stream �releasing operating
system resources associated
with it�	

output�f� v�
Write the sequence v to f 	

output��f� x�
Write the element x to f 	

�ush out�f�
Flush f �s bu�er� that is� make the underlying �le re�ect any previous output oper

ations	

i � getpos out�f�
Tell the current position of f �not always supported��

i � endpos out�f�
Tell the ending position of f �not always supported�� For the standard modules Tex�
tIO and BinIO� i is an integer equal to the number of elements in the �le	 Not always
supported �raises Io if not supported on f��

setpos out�f� i�
Seek to position i of f �not always supported�� For the standard modules TextIO
and BinIO� i is an integer equal to the number of elements since the beginning of the
�le	 Positions correspond 
�
 to elements in the �le� and are not in any way abstract	

Any of these functions may raise the Io exception if an operation fails �including
close out if a bu�er cannot be �ushed�	

Random access

The getpos� endpos� setpos functions all operate on special FilePosInt integers	 In some
implementations these may be ordinary integers� in others they may be double
precision or
even arbitrary precision integers	 Thus� one of the following might be true�

structure FilePosInt � Int

or structure FilePosInt � Int�


or structure FilePosInt � LargeInt

or FilePosInt might be some other integer structure	 This allows operations on extremely
large �les	

Users can operate on the pos type using FilePosInt�� and FilePosInt��� or convert
to�from ordinary integers using FilePosInt�toDefault and FilePosInt�fromDefault�at
the risk of being unable to process large �les	�

�Perhaps we should require that FilePosInt be abstract� that is� abstraction FilePosInt � INTEGER

� Int� so that programmers are forced to write more portable code�

�



Closing �les on program exit

All streams created byTextIO�open in�TextIO�open out�BinIO�open in� andBinIO�open out
will be closed �the outstreams among them �ushed� when the ML program exits	 The out

streams std out and std err will be �ushed� but not closed� on program exit	

Redirecting IO streams

There is also a set of primitives to relate IO streams to the �lazy functional streams� model
of input�output� and thus to the underlying unbu�ered reader�writer primitives�

StreamIO

The particular instantiation of the STREAM IO interface underlying this IO mod

ule �i	e	� streams of bytes� chars� or some other element type�	

f �mk instream�s�
Create a conventional stream f from a functional stream s	

s � get instream�f�
Extract the functional stream s from f 	 This allows arbitrary lookahead� for example�

fun lookahead�n�f�n� �

let val f� � mk�instream�get�instream�f��

in input�n�f��n�

end

This makes a �copy� f � of the stream f � then input operations in f � won�t a�ect f
�though setpos in on f � may e�ectively close f�	 For more details� see sections �� ��
�� �� and �� which give a more precise speci�cation of stream behavior	

set instream�f� s�
Redirect f � so that further input comes from s	 For example�

fun from�file�g�name� �

let val f � open�in name

val save�std�in � get�instream std�in

in set�instream�std�in�get�instream f��

g���

set�instream�std�in� save�std�in�

end

For more details� see the next few sections	

f �mk outstream�s�
Create a conventional outstream f from a StreamIO�outstream s	 The output
streams in StreamIO are not �functional�� they are conventional streams oper

ated on by side
e�ecting output	 The di�erence between an IO�outstream and a
StreamIO�outstream is that the former may be redirected using set outstream	
Think of the former as a ref of the latter	

�



s � get outstream�f�
Extract the underlying outstream s from the redirectable outstream f 	 Unfortunately�
s is not �pure functional�� so there�s no equivalent of the lookahead trick shown above	
Unlike instreams� if

val f� � mk�outstream�get�outstream f�

then operations on f � are equivalent to operations on f 	

set outstream�f� s�
Useful for redirecting output	 For example�

fun to�file�g�name� �

let val f � open�out name

val save�std�out � get�outstream std�out

in set�outstream�std�out�get�outstream f��

g���

set�outstream�std�out� save�std�out�

end

In can be argued that this is not very elegant� the function g� instead of writing stu�
to std out� should have been parameterized �in the usual ML way� on an outstream
from the very beginning	 Then the get and set primitives wouldn�t be needed	

Translation

In some environments� the external representation of a text �le is di�erent from its internal
representation� for example� in MS
DOS� text �les on disk contain CR
LF� and in memory
contain only LF at the end of each line	 Binary streams �BinIO�instream� match the
external �les byte for byte� text streams �TextIO�instream� are translated	 Normally�
users of TextIO will not need to know or care about this translation� but for more so

phisticated users� the translation functions are made visible as TextIO�translate in and
TextIO�translate out	 On Unix systems� these will be identity functions	 See section �	�	

� OS

The primitive I�O �PrimIO�� stream I�O �StreamIO�� and standard I�O �IO� packages
require only these components of the OS structure�

structure OS � sig

type syserror

val noError � syserror

exception SysErr of

�ml�op � string�

os�op � string�

reason � syserror�

end

�



For basic �operating system� functions such as reading and writing� the input�output
modules do not reference the OS structure directly	 Instead� each stream is built on a
PrimIO�reader or PrimIO�writer� the readers and writers contain functions that can
accomplish the system calls	 But it is also possible for users to synthesize readers or writers
that don�t do system calls at all� or do unconventional ones	 The parameterization of IO
on �readers� and �writers� is described in the next section	

� PRIM IO

Primitive I�O is meant to be an abstraction of the system call operations commonly available
on �le descriptors	 �

signature PRIM�IO �

sig

type elem

type vector

type array

type pos

exception Io of �

ml�op � string�

name � string�

os�op � string�

reason � string�

syserror � OS	syserror

�

datatype reader � Rd of

�read�noblock � �int �� vector option� option�

reada�noblock� ��data� array� first� int� nelems� int� ��

int option� option�

read�block � �int �� vector� option�

reada�block� ��data� array� first� int� nelems� int� ��

int� option�

block � �unit �� unit� option�

can�input � �unit �� bool� option�

name � string�

chunksize � int�

close � unit �� unit�

getpos � �unit �� pos� option�

setpos � �pos �� unit� option�

endpos � �unit �� pos� option�

find�pos � ��data� vector� first� int� nelems� int��pos

�� pos�� option�

datatype writer � Wr of

�Perhaps Io shouldn�t be in this signature� where should it live�

�



�write�noblock� ��data� vector� first� int� nelems� int� ��

int option� option�

writea�noblock� ��data� array� first� int� nelems� int� ��

int option� option�

write�block� ��data� vector� first� int� nelems� int� ��

int� option�

writea�block� ��data� array� first� int� nelems� int� ��

int� option�

block� �unit��unit� option�

can�output� �unit��bool� option�

name� string�

chunksize� int�

close� unit �� unit�

getpos � �unit��pos� option�

setpos � �pos��unit� option�

endpos � �unit��pos� option�

val open�in� string �� reader

val open�out� string �� writer

val augment�in � reader �� reader

val augment�out� writer �� writer

end

A �le �device� etc	� is a sequence of �elements� �elem�� which may �for example� be
characters or bytes	 The distinction between characters and bytes is necessary on DOS�
where CR
LF is translated to LF when reading character �les� or on Windows
NT where
characters are 
�
bits �Unicode� and bytes are � bits	

One typically reads or writes a sequence of elements in one system call� this sequence
is the vector type	 Sometimes it is useful to write the sequence from a mutable array
instead of from the vector	

A reader is a �le �device� etc	� opened for reading� and awriter one opened for writing	
The components of a reader are

close��
Closes the reader �for example� frees operating system resources�	 Further operations
to this reader are illegal and must be checked for by the reader �the Io exception must
be raised�	

name

The name associated with this �le or device� for use in error messages shown to the
user	

chunksize
The recommended �e�cient� size of read operations on this reader	 This is typically
to the block size of the operating system�s bu�ers	 If that is not known� a value of
���� or ���� will probably work well	 Chunksize � 
 strongly recommends �but
cannot guarantee� since bu�ering occurs in other modules� not this one� unbu�ered
I�O on this reader	 Chunksize � � is illegal	

�



read noblock�n�

�optional� Reads i elements without blocking� for � � i � n creating a vector v�
returning some�v�� or �if a read would block� returns none	

read block�n�
�optional� Reads i elements for � � i � n returning a vector v of length i� blocks
�waits� if necessary until at least one element is available	

reada noblockfbuf�a�	rst�i�nelems�ng
�optional� Reads k elements without blocking� for � � k � n into ai� � � � � ai�k���
returning some�k�� if no elements remain before end
of
�le� returns some��� without
blocking� or �if a read would block� returns none	

reada blockfbuf�a�	rst�i�nelems�ng
�optional� Reads k elements for � � k � n into ai� � � � � ai�k��� returning a vector
k� blocks �waits� if necessary until at least one element is available	 If no elements
reamain before end
of
�le� returns �	

block��
�optional� Returns only when at least one element is available for read without block

ing	

can input��
�optional� Returns true i� the next read can proceed without blocking	

getpos��
�optional� Tells the current position in the �le	 Useful even for non
seekable �les� if
the endpos function is provided �because large input operations are more e�cient if
the distance from �here to end of �le� is known�	

setpos�i�

�optional� Move to position i in �le	

endpos��

�optional� The position at the end of the �le	

	nd pos�fdata � v� �rst � i� nelems � ng� p�
�option� If 	nd pos�none� then positions in the reader must correspond 
�
 to
elements returned from the read functions� and endpos returns exactly the number
of elements in the �le	 If 	nd pos�some�f�� then this is not necessarily true	 In that
case� f�data � v� �rst � i� nelems � n� p� tells the position of the �i� n�th element of
the vector v� assuming that the position of the ith element is p	 Section �	� explains
why this is useful	

One of read block� reada block� read noblock� or reada noblock must be pro

vided	

Providing more of the optional functions increases functionality and�or e�ciency of
clients�


	 Absence of all of read block� reada block� and block means that blocking input is
not possible	


�



�	 Absence of all of read noblock� reada noblock� and can input means that non

blocking input is not possible	

�	 Absence of read noblock means that non
blocking input requires two system calls
�using can input� read block�	

�	 Absence of reada noblock or reada block means that input into an array requires
extra copying	 But I do not anticipate that reading into arrays will normally be very
important in the �lazy functional stream� model�

Clients of PrimIO are required to synthesize blocking reads from
read noblock�block� synthesize vector reads from array reads� synthesize array
reads from vector reads� as needed�so the PrimIO�reader is required to provide
only a minimum set	 If the reader can provide more than the minimum set in a
way that is more e�cient then the obvious synthesis than by all means it should do
so	 Providing more than the minimum by just doing the obvious synthesis inside the
PrimIO layer is not recommended because then clients won�t get the �hint� about
which are the e�cient ��recommended�� operations	

The augment in function takes a reader r and produces a reader in which as many as
possible of read block� reada block� read noblock� reada noblock are provided�
by synthesizing these from the operations of r	

�	 Absence of endposmeans that very large inputs �where vectors must be pre
allocated�
cannot be done e�ciently �in one system call� without copying�	

�	 Absence of getpos� in the unusual case where a bu�ered system is applied to a reader
not positioned at the beginning of the �le� may lead to excessive memory allocation of
vectors for very large input operations	

�	 Absence of getpos means that bu�ered setpos may be less e�cient	

�	 Absence of setpos prevents random access	

�	 If getpos is provided� and pos positions do not correspond 
�
 to elements returned
from the read functions� then 	nd pos must be provided	 This will typically be
necessary when the reader is performing some sort of translation on the input stream	
If the translation function is invertible� then 	nd pos will be straightforward to
implement	 If not invertible� then 	nd pos can seek to pos in the underlying �le� and
re
translate forward to the right point	 In that case� the implementation of 	nd pos
will probably require� p� � getpos� setpos�pos�� read� setpos�p�� to restore the �le
position to what it was before the 	nd pos operation	


�	 If 	nd pos is some�f�� then clients of this reader will probably do many getpos
operations	 For e�ciency� if 	nd pos�some�f�� the reader should keep track of �le
positions� incrementing with each read� so as to avoid a system call for each getpos
operation	



	 Even when 	nd pos�none� the reader could keep track of �le positions to avoid
system calls for getpos	 It may be the case� however� that the vast majority of �les
are read only sequentially� so it may not be useful to optimize getpos	

The components of a writer are�







write noblockfbuf�v�	rst�i�nelems�ng

This �optional� function without blocking writes elements vi� � � � � vi�k��� for k � n to
the output device� and returns some�k�� or �if the write would block� returns none	
k � � is not recommended �prohibited��	 Raises Io on failure of underlying system
call� or Subscript if i � � or i� n � length�v�	

writea noblockfbuf�a�	rst�i�nelems�ng
This �optional� function without blocking writes elements ai� � � � � ai�k��� for k � n to
the output device� and returns some�k�� or �if the write would block� returns none	
k � � is not recommended �prohibited��	

write blockfbuf�v�	rst�i�nelems�ng

This �optional� function writes elements vi� � � � � vi�k��� for � � k � n to the output
device� and returns k	 If necessary� waits �blocks� until the external world can accept
at least one element	

writea blockfbuf�a�	rst�i�nelems�ng
This �optional� function writes elements ai� � � � � ai�k��� for � � k � n to the output
device� and returns k	 If necessary� waits �blocks� until the external world can accept
at least one element	

write noblockfbuf�v�	rst�i�nelems�ng

This �optional� function writes elements vi� � � � � vi�k��� for � � k � n to the output
device without blocking� and returns some�k�� or �if the write would block� returns
none	

writea noblockfbuf�a�	rst�i�nelems�ng
This �optional� function writes elements vi� � � � � vi�k��� for � � k � n to the output
device without blocking� and returns some�k�� or �if the write would block� returns
none	

block��
This �optional� function does not return until the writer is guaranteed to be able to
write without blocking	

can output��
�optional� Returns true i� the next write can proceed without blocking	

name

The name associated with this �le or device� for use in error messages shown to the
user	

chunksize

The recommended �e�cient� size of write operations on this writer	 This is typically
to the block size of the operating system�s bu�ers	 If that is not known� a value of ����
or ���� will probably work well	 Chunksize � 
 strongly recommends �but cannot
guarantee� since bu�ering occurs in other modules� not this one� unbu�ered I�O on
the writer	 Chunksize � � is illegal �functions in other modules taking writers as
arguments may raise exceptions�	

close��
Closes the writer �for example� frees operating system resources devoted to this


�



writer�	 Further operations to this writer are illegal and must be checked for by
the writer �Io must be raised�	

getpos��

�optional� Tells the current position within the �le	 Most useful on seekable writers	

endpos��
�optional� The position at the end of the �le	

setpos�i�
�optional� Moves to position i in the �le� so future writes occur at this position	

One of write block� writea block� write noblock� or writea noblock must be pro

vided	 Providing more of the optional functions increases functionality and�or e�ciency of
clients�


	 Absence of all of write block� writea block� and block means that blocking output
is not possible	

�	 Absence of all of write noblock� writea noblock� and can output means that
non
blocking output is not possible	

�	 Absence of write noblock means that non
blocking output requires two system calls
�using can output� write block�	

�	 Absence of writea block or writea noblock means that extra copying will be re

quired to write from an array	

�	 Absence of writea noblock� write noblock� and can output from a writer means
that nonblocking output is impossible	 But the standard StreamIO modules do not
support nonblocking output anyway	

�	 Absence of getpos means that bu�ered setpos may be less e�cient	

�	 If pos �� int then bu�ered setpos may be di�cult to implement� but for �standard�
modules pos�int

�	 Absence of setpos prevents random access	

The augment out function takes a writer w and produces a writer in which as many as
possible of write block� writea block� write noblock� writea noblock are provided�
by synthesizing these from the operations of w	

Any of the component functions of readers or writers may raise the Io exception	 No
other exceptions should be raised	 The components of Io are�

ml op

The name of the reader�writer component function raising the exception	

name
Should equal the name component of the reader or writer	

os op
The name of the operating system call �if any� that failed� otherwise empty	


�



syserror

If the Io exception is raised as the result of handling an OS�SysErr exception� then
the reason code provided by the operating system	 Otherwise� OS�noError	

reason
If syserror �� OS�noError� then OS�errorName�syserror�� otherwise� a textual
summary of the error	

The functions open in and open out provide system
default ways to create readers
from ��le names	� Structures matching this signature may leave these two functions unim

plemented �by having them raise the Io exception� if there is no appropriate system default	

� PrimIO

The functor PrimIO builds standard instances of the PRIM IO signature	

functor PrimIO�structure A � MONO�ARRAY

structure V � MONO�VECTOR

sharing type A	elem�V	elem

val someElem � A	elem

structure Pos � INTEGER� � PRIM�IO �

struct 	 	 	 end

The only nontrivial parts of the PrimIO functor are the implementations of the functions
augment in� and augment out� etc	 simulate one kind of reader �or writer� functionality
in terms of other kinds	 For example�

fun augment�in �r as Rd r�� �

let reada�to�read reada i �

let val a � A	array�i�someElem�

val i� � f�data�a�first���nelems�i��

in A	extract�a���i��

end

val read�block� �

case r

of Rd�read�block�SOME f�			� �� SOME f

� Rd�reada�block�SOME f�			� �� SOME�reada�to�read f�

� Rd�read�noblock�SOME f�block�SOME b�			� ��

SOME�fn i �� �b��� f i��

� Rd�reada�noblock�SOME f� block�SOME b�			� ��

SOME�fn i �� �b��� reada�to�read f i��

� � �� NONE

	 	 	

in Rd�block� �block r�� 	 	 	 read�block�read�block�� 	 	 	 �

end

� STREAM IO

The Stream I�O interface provides bu�ered reading and writing to input and output streams	


�



Input streams are treated in the lazy functional style� that is� input from a stream f

yields a �nite vector of elements� plus a new stream f �	 Input from f again will yield the
same elements� to advance within the stream in the usual way it is necessary to do further
input from f �	 This interface allows arbitrary lookahead to be done very cleanly� which
should be useful both for ad hoc lexical analysis and for table
driven� regular
expression

based lexing	

Output streams are handled more conventionally� since the lazy functional style doesn�t
seem to make sense for output	

signature STREAM�IO �

sig

structure PrimIO� PRIM�IO

type elem sharing type elem � PrimIO	elem

type vector sharing type vector � PrimIO	vector

type pos sharing type pos � PrimIO	pos

type instream

type outstream

val open�in � string �� instream

val mk�instream � PrimIO	reader �� instream

val close�in � instream �� unit

val setpos�in � instream � pos �� instream

val getpos�in � instream �� pos

val endpos�in � instream �� pos

val input � instream �� vector � instream

val input�all � instream �� vector

val input�noblock � instream �� �vector � instream� option

val input� � instream �� elem option � instream

val input�n � instream � int �� vector � instream

val end�of�stream � instream �� bool

val get�reader � instream �� PrimIO	reader

val open�out� string �� outstream

val mk�outstream � PrimIO	writer �� outstream

val close�out � outstream �� unit

val output � �outstream � vector� �� unit

val output� � �outstream � elem� �� unit

val flush�out � outstream �� unit

val getpos�out � outstream �� pos

val setpos�out � outstream � pos �� unit

val endpos�out � outstream �� pos

val get�writer� outstream �� PrimIO	writer

end

Each instream f can be viewed as a sequence of �available� elements �the bu�er or
sequence of bu�ers� and a mechanism �the reader� for obtaining more	 After an opera



�



tion �v� f �� � input�f� it is guaranteed that v is a pre�x of the available elements	 In a
�truncated� instream� there is no mechanism for obtaining more� so the �available� ele

ments comprise the entire stream	 In a �terminated� outstream� there is no mechanism for
outputting more� so any output operations will raise the Io exception	

PrimIO
Every instance of STREAM IO is built over an instance of PRIM IO	

elem
A single element �member of a stream�	

vector
A sequence of elements� just as in PRIM IO	

f � open in�s�
Opens a �le named s as a stream f 	 �Default� implementations of STREAM IO will
support open in� other implementations may choose to support onlymk instream�
raising Io on open in	

f �mk instream�r�
Create a bu�ered stream f from a reader r	 In r� read block� reada block� and
block must not all be none or an Io exception will be raised	 �Most users will
normally use open in instead	�

close in�f�

Truncate f � and release operating system resources associated with the underlying �le
�if any�	

g � setpos in�f� i�
Now g is a new instream starting from position i of f 	 f may or may not be trun

cated� depending on whether the setpos request can be satis�ed within the bu�er	
�Nondeterministic behavior� is that bad�� Not always supported�

getpos in�f�
Return the current position of f 	 Not always supported�

endpos in�f�
Return the position at end of �le of f 	 Not always supported�

�v� f �� � input�f�
If any elements of f are available� return sequence v of one or more elements and the
�remainder� f � of the stream	 If f is at end of �le� return the empty sequence	 Other

wise read from the operating system �which may block� until one of those conditions
occurs	

v � input all�f�
Return the vector v of all the elements of f up to end of stream	 Semantically
equivalent to�

fun input�all�f� � let val �a�f�� � input f

in if size�a��� then a

else a � input�all f�

end


�



where � is the concatenation operator on element vectors	

�v� f �� � input noblock�f�
If any non
empty sequence v of f is available or can be read from the operating system
without blocking� return some�w� f �� where w is any non
empty pre�x of v� and f � is
the �rest� of the stream	 Otherwise return none	

�c� f �� � input��f�
If at least one element e of f is available� return �some�e�� f ��	 If f is at end of �le�
return the none	 Otherwise read from the operating system �which may block� until
one of those conditions occurs	 Semantically equivalent to�

fun input��f� � let val �v�f�� � input f

in �if size�v��� then NONE else SOME�sub�v�����

f��

end

�v� f �� � input n�f� n�
If at least n elements remain before end of stream� return the �rst n elements	 Oth

erwise� return the �possibly empty� sequence of elements remaining before end of
stream	 Blocks if necessary	 �This was the behavior of the input function in the 
���
De�nition of Standard ML	� Semantically equivalent to�

fun input�n�f��� � �empty� f�

� input�n�f�n� � let val �x�f�� � input� f

val �s�f��� � input�n�f�n���

in �x�s� f���

end

end of stream�f�
False if any characters are available in f � true if f is at end of stream	 Otherwise
reads �perhaps blocking� until one of these conditions occurs	 Exactly equivalent to
�size�input f����	

get reader�f�
Extract the underlying reader from f 	 Truncates f 	 Careful users should probably
do something like

let val r � get�reader f

val v � input�all f

in 			

end

so as to obtain the elements v already in the bu�er before doing anything with r	

f � open out�s�
Open �for writing� a �le named s �creating it if necessary� as an outstream f 	 Not
always supported�


�



f �mk outstream�w� s�
Create a bu�ered outstream f from a writer w	 In w� write block� writea block�
and block must not all be none or an Io exception will be raised	

close out�f�
Flush f �s bu�er� terminate f � then close the underlying writer �releasing operating

system resources associated with it�	

�ush out�f�
Flush f �s bu�er� that is� make the underlying �le re�ect any previous output oper

ations	

output�f� v�
Write the sequence v to f � this may block until the system is prepared to accept more
output	 StreamIO does not provide any nonblocking output function	

output��f� x�
Write the element x to f � may block	

get writer�f�
Get the underlying writer associated with f 	 Flushes and terminates f 	

getpos out�f�
Give the current position of f in the underlying �le	 Not always supported�

endpos out�f�
The position at the end of �le f 	 Not always supported�

setpos out�f� i�
Set the current position of f in the underlying �le to i	 Flush f if necessary	 Not
always supported�

Any pre�x of the concatenation of previous writes �since the last setpos or �ush� may
be re�ected in the underlying �le	

Operations marked Not always supported may fail on some streams or in some instanti

ations of the STREAM IO signature� raising Iofsyserror � OS�noError� � � �g	�

Rules� The following expressions are all guaranteed true� if they complete without
exception	

Input is semi
deterministic� input may read any number of elements from f the ��rst�
time� but then it is committed to its choice� and must return the same number of elements
on subsequent reads from the same point	

let val �a��� � input f

val �b��� � input f

in a�b

end

Closing a stream just causes the not
yet
determined part of the stream to be empty�

�Should we make a special OS�notSupported�


�



let val �a�f�� � input f

val � � close�in f

val �b��� � input f

in a�b andalso end�of�stream f�

end �� must be true ��

If a stream has already been at least partly determined� then input cannot possibly
block�

let val a � input f

in case input�noblock f

of SOME a �� a�b

� NONE �� false

end �� must be true ��

Note that a successful input noblock does not imply that more characters remain before
end
of
�le� just that reading won�t block	

A freshly opened stream is still undetermined �no �read� has yet been done on the
underlying reader��

let val a � open�in name �� or� a � mk�instream�r� ��

in close a�

size�input a� � �

end

This has the useful consequence that if one opens a stream� then extracts the underlying
reader� the reader has not yet been advanced in its �le	

Closing a stream guarantees that the underlying reader will never again be accessed� so
input can�t possibly block�

�case �close f� input�noblock f� of SOME � �� true � NONE �� false�

The end of stream test is equivalent to input returning an empty sequence�

let val �a��� � input f in �size�a���� � �end�of�stream f� end

Unbu
ered I�O That is� if chunksize�
 in the underlying reader� then input operations
must be unbu�ered�

let val f � mk�instream�reader�

val �a�f�� � input�f�n�

val PrimIO	Rd�chunksize�			��get�instream f

in chunksize�� orelse end�of�stream f�

end

Though input may perform a read�k� operation on the reader �for k � 
�� it must immedi

ately return all the elements it receives	 However� this does not hold for partly determined
instreams�

let val f � mk�instream�reader�

val � � do�input�operations�on�f�

val �a�f�� � input�f�n�

val PrimIO	Rd�chunksize�			��get�instream f

in chunksize�� orelse end�of�stream f� �� could be false��

end


�



because in this case� the stream f may have accumulated a history of several responses� and
input is required to repeat them one at a time	

Similarly� output operations are unbu�ered if chunksize�
 in the underlying writer	
Unbu�ered output means that the data has been written to the underlying writer by the
time output returns	

Don�t bother the reader input must be done without any operation on the underlying
reader� whenever it is possible to do so by using elements from the bu�er	 This is necessary
so that repeated calls to end of 	le will not make repeated system calls	

This rule could be formalized by de�ning a �monitor��

val monitor� reader �� �rd� reader�

chars�read� int ref�

op�count� int ref�

and making statements such as�

let val �rd�chars�read�op�count� � monitor�reader�

val f � mk�instream�rd�

val �f��n�elems� � do�things�counting�elements�f�

val p� � getpos�in f�

val c� � �chars�read

val ops � �op�count

val � � input f�

in not ��n�elems � c�� andalso ��op�count � ops��

end

but perhaps this level of detail is unnecessary	

Multiple end�of�	le In Unix� and perhaps in other operating systems� there is no notion
of �end of stream	� Instead� by convention a read system call that returns zero bytes is
interpreted to mean end of stream	 However� the next read to that stream could return
more bytes	 This situation would arise if� for example�

� the user hits cntl
D on an interactive tty stream� and then types more characters�

� input reaches the end of a disk �le� but then some other process appends more bytes
to the �le	

Consequently� the following is not guaranteed to be true�

let val z � end�of�stream f

val �a�f�� � input f

val x � end�of�stream f�

in x�z �� not necessarily true� ��

end

The �don�t bother the reader� rule� combined with the de�nition of end of stream� guar

antees that

end�of�stream�f� � end�of�stream�f�	

Implementors should beware that an empty bu�er sometimes means end of stream� and
sometimes not� I found an extra boolean variable necessary to keep track	

��



� StreamIO

The functor StreamIO layers a bu�ering system on a primitive IO module�

functor StreamIO�structure PrimIO � PRIM�IO

structure Vec� MONO�VECTOR

structure Arr� MONO�ARRAY

val some�elem � PrimIO	elem

sharing type PrimIO	elem � Arr	elem � Vec	elem

sharing type PrimIO	vector�Arr	vector�Vec	vector

sharing type PrimIO	array�Arr	array

sharing type PrimIO	pos�FilePosInt	int

� � STREAM�IO � 			

The Vec and Arr structures provide Vector and Array operations for manipulating
the vectors and arrays used in PrimIO and StreamIO	 The element some elem is used to
initialize bu�er arrays� any element will do	

If �ush out �nds that it can do only a partial write �i	e	� writea block or a similar
function returns a �number of elements written� less than its �nelems� argument� then
�ush out must adjust its bu�er for the items written and then try again	 If the �rst or
any successive write attempt returns zero elements written �or raises an exception� then
�ush out raises an Io exception	

What is the behavior of the Stream IO primitives if a user interrupt occurs� Reppy
thinks that losing information is preferable to printing output twice	 This should be cogi

tated and clari�ed	

Implementation notes�
The previous section gives the speci�cation of StreamIO behavior	
With bu�ered reading� a getpos operation on the instreammay be done in the middle

of a bu�er	 If 	nd pos is none in the underlying reader� then the StreamIO�getpos can
be implemented by asking the current position �of the end of the bu�er� and then sub

tracting	 But 	nd pos is some�f�� then the subtraction may not work� because elements
may not correspond 
�
 to positions	 In that case� it will be necessary to call 	nd pos�
this in turn requires the position at the beginning of the bu�er	 But this means that the
StreamIO system must do a getpos just before reading each new bu�er� and remember
the bu�er position		 �This is not necessary if 	nd pos�none	�

Here are some suggestions for e�cient performance�

� Operations on the underlying readers and writers �read block� etc	� are expected to
be expensive �involving a system call� with context switch�	

� Small input operations can be done from a bu�er� the read block or read noblock
operation of the underlying reader can replenish the bu�er when necessary	

� Each reader may provide only a subset of read block� read noblock� block� can input�
etc	 An augmented reader that provides more operations that can be constructed us

ing PrimIO�augment in� but it may be more e�cient to use the functions directly
provided by the reader� instead of relying on the constructed ones	 The same applies
to augmented writers	

�This is rather unfortunate�

�




� Keep the position of the beginning of the bu�er on a multiple
of
chunksize boundary�
and do read or write operations with a multiple
of
chunksize number of elements	

� For very large input all or input n operations� it is �somewhat� ine�cient to read
one chunksize at a time and then concatenate all the results together	 Instead� it
is good to try to do the read all in one large system call� that is� read block�n�	
However� in a typical implementation of read block this requires pre
allocating a
vector of size n	 If the user does input all�� or input n�maxint�� either the size
of the vector is not known a priori or the allocation of a much
too
large bu�er is
wasteful	 Therefore� for large input operations� query the size of the reader using
endpos� subtract the current position� and try to read that much	 But one should
also keep things rounded to the nearest chunksize	

� The use of endpos to try to do �large� read operations of just the right size will be
inaccurate if 	nd pos�some	 But this inaccuracy can be tolerated� if the translation
is anything close to 
�
� endpos will still provide a very good hint about the order

of
magnitude size of the �le	

� Similar suggestions apply to very large output operations	 Small outputs go through
a bu�er� the bu�er is written with writea block	 Very large outputs can be written
directly from the argument string using write block	

� But how should the current bu�er position be remembered� Either a getpos ev

ery time endpos is called� or a getpos when mk instream is �rst called� followed
by careful maintenance of the position of the beginning of the bu�er	 �Remember�
mk instreammight be called only after the underlying reader has been moved away
from the beginning position	�

� A lazy functional instream can �should� be implemented as a sequence of immutable
�vector� bu�ers� each with a mutable ref to the next �thing�� which is either another
bu�er� the underlying reader� or an indication that the stream has been truncated	

� The input function should return the largest sequence that is most convenient� usually
this means �the remaining contents of the current bu�er	�

� To support non
blocking input� use read noblock if it exists� otherwise do can input

followed �if appropriate� by read block	

� To support blocking input� use read block if it exists� otherwise do read noblock
followed �if would block� by block and then another read noblock	

� To support lazy functional streams� reada block and reada noblock are not useful�
they are included only for completeness	

� Setpos in� if setpos
ing forward� might choose to follow the bu�er sequence� and can
perhaps satisfy the setpos request without any underlying reader operation	

� Getpos in� in some implementations� can tell the position without a system call� if
it knows the position of the beginning of the bu�er and the current position within
the bu�er	

� writea block should� if necessary� be synthesized from write block� and vice versa	
Similarly forwritea noblock andwrite noblock� reada noblock and read noblock�
reada block and read block	

��



� IO functor

The precise de�nition of �conventional� streams �IO signature� is in terms of �lazy func

tional� streams �STREAM IO�	 The functor IO is provided�

functor IO�structure S � STREAM�IO� � IO � 			

The structures BinIO and TextIO are �presumably� built using separate applications of
this functor �though TextIO is then enhanced with std in� etc	�� but users may apply the
StreamIO and IO functors to make streams data types other than char and byte	

The semantics of IO are simple enough that it is su�cient to give a reference imple

mentation	

functor IO�structure S � STREAM�IO� � IO �

let abstraction I �

struct

structure StreamIO � S

type instream � S�instream ref

type outstream � S�outstream ref

type elem � S�elem

type vector � S�vector

type pos � S�pos

val mk�instream � ref

val get�instream � �

val set�instream � op ��

val mk�outstream � ref

val get�outstream � �

val set�outstream � op ��

val open�in � ref o S�open�in

fun end�of f � if S�end�of�stream f then f else end�of����S�input f��

fun close�in�r as ref f� � �S�close�in f	 r �� end�of f�

fun setpos�in�r as ref f
 i� � r �� S�setpos�in�f
i�

val getpos�in � S�getpos�in o �

val endpos�in � S�endpos�in o �

fun input�r as ref f� � let val �v
f�� � S�input f in r��f�	 v end

fun input�all�r as ref f� � let val v � S�input�all f

in r �� end�of f	 v end

fun input�noblock�r as ref f� �

let val �v
f�� � S�input�noblock f in r��f�	 v end

fun input��r as ref f� � let val �v
f�� � S�input� f in r��f�	 v end

val end�of�stream � S�end�of�stream o �

fun lookahead�ref f� � ���S�input� f�

val open�out � ref o S�open�out

val close�out � S�close�out o �

fun output�ref f
 v� � S�output�f
v�

fun output��ref f
 x� � S�output��f
x�

val getpos�out � S�getpos�out o �

val endpos�out � S�endpos�out o �

fun setpos�out�ref f
 i� � S�setpos�out�f
i�

val flush�out � S�flush�out o �

end

in I

end

��



Note that the instream and outstream types are abstract	
Some consequences of this de�nition�
The end of stream semantics are

fun end�of�stream �f as ref ff� � StreamIO	end�of�stream ff

This implies

let val x � end�of�stream f

val y � end�of�stream f

in x�y �� guaranteed true ��

Furthermore� second call to end of stream is guaranteed not to do any system call� this
is a consequence of the �Don�t bother the reader� semantics of StreamIO�input	

However� reading past end of stream is possible via input� the semantics may be
straightforwardly derived from the semantics of StreamIO�input	

The output operations �which were not lazy functional to begin with� are even more
similar between STREAM IO and IO	 The only purpose of the extra ref in IO is to allow
�output redirection	�

� Application Notes

��� Random access reading�writing to the same stream

Instreams are instreams� outstreams are outstreams� and ne�er the twain shall meet	 At
least� not face to face	 However� competent users can construct many things from the
layered functors	

Here�s an example� reading and writing to the same random
access �le without re

opening it	



	 Open the �le for reading� and for writing� extract the underlying reader and writer�
discarding the bu�ering layer	

val reader � TextIO	StreamIO	get�reader �TextIO	StreamIO	open�in name�

val writer � TextIO	StreamIO	get�writer �TextIO	StreamIO	open�out name�

�	 Do some bu�ered writes� then discard the bu�ering layer	

let val out � TextIO	mk�outstream�TextIO	StreamIO	mk�outstream�writer��

in TextIO	setpos�out�out�some�pos��

output�out��Hello ���

output�out��World�n���

flush�out out

end

�	 Do some bu�ered reads� then discard the bu�ering layer	

�The example here uses two �le descriptors on the same �le� This works �ne on Unix� I�m not sure about
other operating systems� Perhaps we should have a PrimIO�open in out function that produces a reader
and a writer sharing a �le descriptor �as a supplement to PrimIO�open in and PrimIO�open out�� Or
perhaps this function should be in some nonstandard module� it doesn�t have to live inside the PrimIO
module�

��



let val inf � TextIO	mk�instream�TextIO	StreamIO	mk�instream�reader��

in TextIO	setpos�in�inf�another�pos��

input inf�

input inf

end

�	 And so on	 It�s cheap and easy to do mk instream whenever switching between
reading and writing	

��� Other reader�writer devices

The functions open in and open out provide system
default ways to create readers from
��le names	�

SML implementations are likely to provide other ways to create readers and writers	
For example�

structure Socket �

sig type socket�name

structure P � TextIO	StreamIO	PrimIO

val open�socket�text�reader� socket�name �� P	reader

val open�bidirectional�socket� socket�name ��

P	reader � P	writer

	 	 	

end

Then the user could bu�er these readers by using mk instream	
Alternatively� a Socket interface could provide the high
level instream�

structure Socket �

sig type socket�name

val open�socket�text�in� socket�name �� TextIO	instream

val open�bidirectional�socket� socket�name ��

TextIO	instream � TextIO	outstream

	 	 	

end

and the user could extract the reader by using get instream and get reader	
Some operating systems have a notion of open for append� this di�ers from open out

followed by setpos�endpos�f�� in that if other processes are also appending to the �le�
each successive write has an implicit setpos to end of �le	 An operating
system support
module could provide a way to create an appending writer	��

��� String readers�writers

A useful kind of reader�writer is an internal text queue� not using any devices at all�

local

fun prim�pipe�� � TextIO	StreamIO	PrimIO	reader �

TextIO	StreamIO	PrimIO	writer �

�	Or should this be a standard feature of TextIO�

��



	 	 	

in

fun pipe�� � instream � outstream �

�� layer mk�instream and mk�outstream on

components of prim�pipe�� ��

end

It would be natural to provide such functions in a library	
Here�s an even simpler example�

fun string�reader�source � string� � TextIO	StreamIO	PrimIO	reader �

let val pos � ref �

fun read n � let val p � �pos

val m � min�n� size source � p�

in pos �� p�m� substring�source�p�m�

end

Rd�read�noblock � SOME�fn n �� SOME�read n���

reada�noblock � NONE�

read�block � SOME�read��

reada�block� NONE�

block � SOME�fn��������

can�input � SOME�fn����true��

name���string���

chunksize�size source�

close�fn�������

getpos�SOME�fn�����pos��

setpos�SOME�fn k �� if ���k andalso k �� size source then pos��k

else raise Io�ml�op��setpos��name���string���os�op����

reason��position out of bounds��

syserror�OS	noError���

endpos�SOME�fn����size source��

end

val open�string � string �� instream �

TextIO	mk�instream o TextIO	StreamIO	mk�instream o string�reader

��� Translated readers

Sometimes one wants to apply a translation function to a stream	 For example� one might
want to translate CR
LF to LF on input� or translated escape
coded ASCII into Unicode	 I
shall discuss translated input streams �readers� here� but the same ideas apply to translated
output streams �writers�	

Since anyone is allowed to counterfeit a reader� it is easy to write a translation function
on readers�

fun translate� �source� TextIO	PrimIO	reader� � TextIO	PrimIO	reader

or

fun translate� �source� BinIO	PrimIO	reader� � TextIO	PrimIO	reader

Here�s an example�

��



fun remove�CR�rd� as TextIO	StreamIO	PrimIO	Rd rd� �

TextIO	StreamIO	PrimIO	reader �

let fun charCR��������� � ��

� charCR c � implode c

fun stringCR s � concat�mapChar charCR �s���size s��

fun option f NONE � NONE

� option f �SOME x� � SOME�f x�

fun retranslate�����pos� � pos

� retranslate�read�nelems�pos� �

let val s � read nelems

val len � size s

fun loop�i�n�p� � if i�s then retranslate�read�n�p�

else if n�� then p

else if CharVector	sub�s�i�� �������

then loop�i���n�p�

else loop�i���n���p�

in loop���nelems�pos�

end

in TextIO	StreamIO	PrimIO	Rd�

read�noblock � option �fn get �� option stringCR o get�

��read�noblock rd��

reada�noblock � �� etc	 ���

read�block � option �fn get �� stringCR o get� ��read�block rd��

reada�block� �� etc	 ���

block � �block rd�

can�input � �can�input rd�

name� �name rd�

chunksize� �chunksize rd�

close� �close rd�

getpos��getpos rd�

setpos��setpos rd�

endpos��endpos rd�

find�pos� �case ��getpos rd� �setpos rd�

TextIO	StreamIO	PrimIO	augment�in rd��

of �SOME get� SOME set�

TextIO	StreamIO	PrimIO	Rd�read�block�readb�			�� ��

SOME�fn ��data�first�nelems��pos���

let val p� � get��

val p� � �set�pos��

retranslate�readb�nelems�pos��

in set�p��� p�

end�

� � �� NONE��

end

Note that the positions in this translated reader �and thus in the translated stream�
do not correspond 
�
 to positions in the underlying reader	 Thus� either 	nd pos must

��



be provided� or getpos� setpos� and endpos must not be provided	 Here we have chosen
to provide 	nd pos whenever possible	 Because the translation is not invertible �we don�t
know where the CR characters might have been�� 	nd posmust re
read the original stream	

Users who need to do random access on translated streams might alse use a solution
similar to the one in section �	
� do setpos on the underlying� untranslated reader	 Then�
after each setpos� apply afresh the translation function �such as remove CR and then
apply a new bu�er �via mk instream�	

��� Abstract positions

In applications where one wants seekable� translated readers with �moded escapes� it is di�

cult represent positions as integers	 This will happen if escape characters semi
permanently
change the translation state of a stream� rather than a�ecting just the next character	

In such a case� one might want to have an abstract data type position� perhaps with a
total ordering but without a mapping to integers	

One way to accomplish this is to make a new structure matching the PRIM IO signa

ture�

abstraction MyPrimIO � PRIM�IO �

sig type pos � string �� or whatever ��

datatype reader � Rd of 				

			

end

Now one can write translated readers that can deal with translated positions more �exibly�
since there�s no 
�
 correspondence property that must be maintained	

The only problem is that the standard StreamIO functor cannot be applied� because
the sharing constraint type pos�int is violated	��

The user can write his own bu�ering functor�

functor MyStreamIO�structure PrimIO � PRIM�IO 			

�� not sharing type PrimIO	pos�int ��

� � STREAM�IO � struct 			 end

structure MyIO � MyStreamIO�structure PrimIO � MyPrimIO 			�

Now MyIO	instream is a di�erent type than TextIO	StreamIO	instream	 If one didn�t rely
on pos�int� then one could still make use of the MyIO interface�

functor MyApplication�IO � STREAM�IO� � struct 			 end

Also� it is possible to write a function to translate aMyPrimIO�reader into an ordinary
PrimIO�reader �but with setpos disabled��

fun standardize �MyPrimIO	Rd rd� �

TextIO	StreamIO	PrimIO	Rd�

read�noblock � �read�noblock rd�

��The sharing of pos	FilePosInt�int is useful to clients of StreamIO� Perhaps it is not necessary for
the internals of the functor� If that were the case� then it would not be necessary to de�ne the functor
MyStreamIO� because functor StreamIO could be used� But MyIO would still be incompatible with
TextIO�StreamIO�

��



reada�noblock � �reada�noblock rd�

read�block � �read�block rd�

reada�block� �reada�block rd�

block � �block rd�

can�input � �can�input rd�

name� �name rd�

chunksize� �chunksize rd�

close� �close rd�

getpos�NONE�

setpos�NONE�

endpos�NONE�

��	 Lexical analysis

Lexical analyzers need to process their input e�ciently� and often need some amount of
lookahead	 Line
oriented applications need to read one line of text at a time� e�ciently	
Both of these applications can make e�ective use of lazy
stream input	

Consider the implementation of an input line function� that reads up to the next
newline character	 A naive implementation would read characters� then concatenate them�

fun input�line �f� TextIO	instream� �

let fun loop �� � case input� f

of SOME����n�� �� ���n�

� SOME c �� c �� loop��

� NONE �� nil

in implode �loop���

end

Now� we may wish to avoid all the list construction and implode call	�� Thus�

fun input�line �f� TextIO	instream� �

let val g� � TextIO	get�instream f

fun loop�i�g� � case input� g

of �SOME����n����� �� i��

� �SOME c� g�� �� loop�i���g��

� �NONE��� �� i

in TextIO	input�n�loop���g���

end

This has the e�ect of looking through the input bu�er for a newline character� then extract

ing just the right
length string from the input bu�er� but it�s all done abstractly	

There are no list constructions� and only one string copy� the extract implied by the
input n call	�� On the other hand� there is a function call for each character� I do not
see this as a problem	 We expect ML programs �or� in fact programs in any language�

��Is this still called implode in the new basis�
��There is some building of SOME constructors� We must still discuss whether input
 should return a

char option� or just return a char with exception on end of �le� But that�s a separate issue� However� in the
input line function I show here� raising the exception leads to natural� e�cient behavior if we also change
the semantics of input line to say that an exception should be raised if the last line of the �le does not end
with a newline character�

��



to implement abstract data types via a function
call interface� if this becomes a source of
ine�ciency� perhaps the solution is for compilers to implement cheaper function calls	

A very similar approach works for lexical analyzers which do more general �perhaps
multi
character� lookahead� First scan the lazy stream to determine the length of the token�
then use input n to extract it and advance the stream	

�	 Loose ends

What about opening �les for append�
What about user �and other� interrupts during bu�ered I�O operations�

��


