
A safe interface to sockets

Draft

John H� Reppy

AT�T Research

Murray Hill� NJ

May ��� ����

� Introduction

One of the arguments for using a higher�level language� such as Standard ML �SML�� is
the greater degree of static checking provided by the language�s type system compared with
more traditional systems programming languages� For example� all I�O descriptors in C
are the same type �i�e�� int�� which can lead to mismatches between operations and the �le
descriptors that they are applied to� While the operating system will catch such type errors
at run�time� it is much better to detect them statically at compile�time than to leave them
to be caught during testing or after deployment in the �eld� Type checking is a weak form
of program veri�cation� but it has the key advantage that it is exhaustive and it scales to
large systems�

When designing SML versions of standard systems APIs�� we should take advantage
of the more powerful type system provided by the language� and provide as much static
type security as possible� At the same time� we must be careful not to make the API too
restrictive� It is important that the common patterns of usage found in C be allowed�

This paper describes the design of a type�safe sockets API for SML� which has been
implemented as part of the Standard ML of New Jersey �SML�NJ� system� The interface
exploits a non�standard use of polymorphism to provide �exible type safety� Before present�
ing the �nal design� we present two earlier attempts at designing a sockets API for SML	
the �rst of these fails to provide adequate type safety� while the second lacks �exibility� It is
hoped that this exposition will aid the design of other system programming APIs for SML�
The interface is part of the Standard ML Standard Library� which is being developed as a
collaboration between a number of SML implementations 
GE���

� Sockets

Sockets are an abstraction for inter�process communication �IPC� that were introduced as
part of the Berkeley version of Unix in ����� They have become a de facto standard for
network communication� and are supported by most major operating systems �including PC

�Application program interface�

�



systems�� Providing a complete API for sockets is an important requirement for a language
to be useful for real�world system�s programming�

In this section� we give a brief overview of Berkeley sockets� which should be su�cient
for understanding the main points of the paper� For a more thorough treatment of sockets
and network programming� there are many references on the subject	 Stevens describes the
use of sockets in Unix systems 
Ste��� while the socket programming interface for Microsoft
Windows is described in 
HTA��� and 
QS���

The sockets API supports two styles of IPC over an abstraction of the underlying net�
work protocol	� stream sockets provide virtual circuits between pairs of processes� and
datagram sockets provide connectionless packet�based communication� In stream�based in�
teraction� the server allocates a master socket that is used to accept connections from clients�
The server then listens on the master socket for connection requests from clients� each re�
quest is allocated a new socket that the server uses to communicate with that particular
client� As the name suggests� stream�based communication is done as a stream of bytes� not
as discrete packets� Connectionless communication is more symmetric	 messages are sent
to a speci�c port at a speci�c address� While datagram sockets provide better performance�
messages may be lost or received out of order� which requires additional programming by
the client��

A summary of the socket operations is given in Table �� the second column notes which
type of socket the operation expects �stream or datagram�� In addition to these basic

Table �	 Summary of socket operations

Operation Socket type Description

socket Both Create a socket
bind Both Bind a socket to a network address
listen Stream Enable a socket for listening
accept Stream Listen for client connections
connect Stream Connect to a server
recv Stream Read data
send Stream Write data
recvfrom Datagram Read a datagram
sendto Datagram Write a datagram
close Both Close a socket
shutdown Stream Shutdown a connection

operations� the sockets API also supports a large collection of operations for controlling the
behavior of sockets� but we do not discuss them here�

The standard C API for sockets provides little type security� and there are a number of
�type� errors that can arise	

�� One of the most common errors is getting the byte�order �little�endian vs� big�endian�
of the socket addresses wrong� When the network byte�order� which is de�ned to be

�All implementations of sockets support the TCP�IP and UDP protocols� but others are often supported�
�There are reliable datagram sockets� but the are not commonly supported�

�



big�endian� agrees with the machine byte�order these errors do not show up during
testing� but will cause problems when the application is ported to a little�endian
machine�

�� There are con�icts between operations on sockets and operations on other kinds of
I�O descriptors� This is because all Unix I�O descriptors are represented by the same
type �int��

�� There are con�icts between operations on stream sockets and operations on datagram
sockets�

�� There are con�icts between operations on a server�s master socket and operations on
connected sockets�

�� There are con�icts between operations that are speci�c to particular network proto�
cols�

We show in the sequel that these errors can be prevented by the proper API design� without
loss of programmer �exibility�

� A �rst attempt

The simplest approach to an SML sockets API is a direct translation of the C API� but this
does not address any of the problems mentioned above� A better approach is to introduce
abstract types for the various types in the API� such as sockets and addresses� This interface
is given in Figure �� By making socket addresses into an abstract type �sock�addr�� we

type addr�family

type sock�type

type sock

type sock�addr

type in�flags � �peek � bool� oob � bool�

type out�flags � �don�t�route � bool� oob � bool�

val socket � �addr�family � sock�type	 
� sock

val bind � �sock � sock�addr	 
� unit

val listen � �sock � int	 
� unit

val accept � sock 
� �sock � sock�addr	

val connect � �sock � sock�addr	 
� unit

val recv � �sock � in�flags	 
� vector

val send � �sock � vector � out�flags	 
� int

val recvFrom � �sock � in�flags	 
� �vector � sock�addr	

val sendTo � �sock � sock�addr � vector � out�flags	 
� int

val close � sock 
� unit

val shutdown � �sock � shutdown�mode	 
� unit

Figure �	 A monomorphic sockets interface

protect the programmer from byteorder errors and promote portability� This interface also
ensures that sockets are not confused with other types of I�O descriptors�

�



While this interface provides more type security than found in the C API� it is quite
easy to misuse the operations� For example� the connect operation is only meaningful on
STREAM sockets� but there is nothing in the interfaces to prevent a program from attempting a
connect on a DGRAM socket� Furthermore� socket addresses have di�erent formats depending
on their domain� but our interface does not place any constraints on them� While these
errors are detected at run�time by the operating system� it goes against the spirit of ML to
rely on dynamic type checking�

� Improving the safety of the interface

One standard approach that we can use to improve the type security of the sockets API is
to introduce di�erent types for the di�erent kinds of sockets and socket addresses� We can
use the SML module system to organize the API into a collection of modules with common
interfaces� but di�erent types� Figure � gives such an interface� The structure InSock

de�nes internet domain sockets� while Unix domain sockets are de�ned by UnSock� The
four socket types �InSock�DGram�sock� etc�� are di�erent� which ensures type safety� In the
case of addresses� each top�level structure �InSock and UnSock� constrains the sock�addr
types in its substructures to be the same� The address family and socket type arguments
to the socket creation functions are implicit in the containing module�

While this approach provides su�cient type security� it has several disadvantages� First�
there are many di�erent instances of the same operation �e�g�� two di�erent bind opera�
tions per supported domain�� This �ys in the face of one of the design goals of Berkeley
sockets	 namely� providing a common interface to di�erent underlying network transport
layers 
LMKQ��� Furthermore� this design loses some necessary �exibilty� For example�
some applications� such as the X Window System Protocol 
Nye��� are based on a particu�
lar socket type �e�g�� stream or datagram�� but support multiple domains �e�g�� both Unix

and internet�� Because the socket I�O operations are speci�c to a particular socket type� a
given application of an I�O operation is restricted to sockets of a speci�c type and domain�
Writing code that could dynamically support multiple domains would require introducing
new abstraction layers� and would cause signi�cant inconvenience for programmers�

It is possible to avoid this problem by introducing additional types and coercions between
the various types� but this would greatly increase the size of an already large API� and would
be cumbersome to programwith� In the next section� we present a di�erent approach� which
is based on a technique we call constrained polymorphism�

� A safe and �exible interface

What we need is a restricted kind of polymorphism� Suppose that we had the types	

type in�addr �� INet domain addresses �	

type in�strm�sock �� INet domain stream sockets �TCP� �	

type in�dgram�sock �� INet domain datagram sockets �UDP� �	

type un�addr �� Unix domain addresses �	

type un�strm�sock �� Unix domain stream sockets �	

type un�dgram�sock �� Unix domain datagram sockets �	

�



signature SOCKET�BASE �

sig

type sock

type sock�addr

type in�flags � �peek � bool� oob � bool�

type out�flags � �don�t�route � bool� oob � bool�

val socket � unit 
� sock

val bind � �sock � sock�addr	 
� unit

val close � sock 
� unit

end

signature DGRAM�SOCKET �

sig

include SOCKET�BASE

val recvFrom � �sock � in�flags	 
� �vector � sock�addr	

val sendTo � �sock � sock�addr � vector � out�flags	 
� int

end

signature STREAM�SOCKET �

sig

include SOCKET�BASE

val connect � sock � sock�addr 
� unit

val listen � �sock � int	 
� unit

val accept � sock 
� �sock � sock�addr	

val shutdown � �sock � shutdown�mode	 
� unit

val recv � �sock � in�flags	 
� vector

val send � �sock � vector � out�flags	 
� int

end

structure InSock � sig

structure DGram � DGRAM�SOCKET

structure Strm � STREAM�SOCKET

sharing type DGram�sock�addr � Strm�sock�addr

val addr � �inet�addr � port	 
� DGram�sock�addr

end � ���

structure UnSock � sig

structure DGram � sig

include DGRAM�SOCKET

val sockPair � unit 
� �sock � sock	

end

structure Strm � sig

include STREAM�SOCKET

val sockPair � unit 
� �sock � sock	

end

sharing type DGram�sock�addr � Strm�sock�addr

val addr � string 
� DGram�sock�addr

end � ���

Figure �	 The module�based interface

�



Then we want to constrain the type of accept to be one of	

val accept � in�strm�sock 
� �in�strm�sock � in�addr	

val accept � un�strm�sock 
� �un�strm�sock � un�addr	

Or more generally	

���� �� � f�in strm sock� in addr�� �un strm sock� un addr�g ��� ��� ���

The type of accept is constrained in two ways	

�� The address and socket it returns has the same domain as its argument�

�� The argument and result socket must both be stream sockets�

In general� we cannot specify such type constraints in SML� but there is a trick that we can
use in this case� We make the socket type into a type generator with two arguments	 one
for the domain and one for the type of socket�

type ��a� �b	 sock

Likewise� we make the socket address type a type generator of one argument �the domain�	

type �a sock�addr

For a function such as accept� we can then enforce the �rst constraint by giving it the
following type	

val accept � ��a� �b	 sock 
� ���a� �b	 sock � �a sock�addr	

This still leaves the problem of restricting accept to stream sockets� To enforce this con�
straint� we introduce new abstract types to be the instances of the type arguments to sock

and sock�addr	

type dgram

type stream

We can then de�ne the type of accept to be	

val accept � ��a� stream	 sock 
� ���a� stream	 sock � �a sock�addr	

The stream and dgram types are void types � they have no values� but merely serve as
witnesses to enforce the various constraints in the signatures�� As shown below� we also
de�ne void types for the network domains� We then de�ne multiple instances of the socket
function� one for each combination of socket type and domain� Internally� these sockets are
all the same type� but we use abstraction to make them appear distinct�

We can further improve the security of the interface by distinguishing between the
passive socket used by a server to accept new connections and the active sockets used to
communicate� We do this by parameterizing the stream type� and introducing two new
void types	

�Since SML doesn�t actually have void types� these are represented by unit types internally� but the
values are not exported outside the implementation�

�



type �a stream

type passive

type active

And we change the type of accept to	

val accept � ��a� passive stream	 sock


� ���a� active stream	 sock � �a sock�addr	

With this re�nement� we can now present the complete interface� which is given in Figure ��
Note that accept and listen are to restricted passive stream sockets� while connect re�

type ��a� �b	 sock

type �a sock�addr

type dgram

type �a stream

type passive

type active

val accept � ��a� passive stream	 sock


� ���a� active stream	 sock � �a sock�addr	

val listen � ���a� passive stream	 sock � int	 
� unit

val bind � ���a� �b	 sock � �a sock�addr	 
� unit

val connect � ���a� active stream	 sock � �a sock�addr	 
� unit

val close � ��a� �b	 sock 
� unit

val recv � ���a� active stream	 sock � in�flags	 
� vector

val send � ���a� active stream	 sock � vector � out�flags	 
� int

val recvFrom � ���a� dgram	 sock � in�flags	 
� �vector � �a sock�addr	

val sendTo � ���a� dgram	 sock � �a sock�addr � vector � out�flags	


� int

Figure �	 A polymorphic sockets interface

quires an active socket� Likewise� the stream I�O operations� send and recv� also require
active stream sockets�

This use of parameterized type generators gives rise to something similar to a subtyping
hierarchy� For example� �ip� dgram� sock might be viewed as a subtype of �ip� �b�

sock� Other mechanisms for supporting type hierarchies� such as Haskell�s type classes

HAB���� can also capture this relationship� Our mechanism goes further� however� since
it also establishes constraints between di�erent types �e�g�� the domain of the socket and
socket address in the accept operation��

structure IPSock � sig

type ip

val addr � �inet�addr � int	 
� ip sock�addr

val udpSocket � unit 
� �ip� dgram	 sock

val tcpSocket � unit 
� �ip� �a stream	 sock

end � struct ��� end

�



structure UnixSock � sig

type unix

val addr � string 
� unix sock�addr

val dgramSocket � unit 
� �unix� dgram	 sock

val strmSocket � unit 
� �unix� �a stream	 sock

end � struct ��� end

��� Implementation

The implementation of this approach is quite simple� For the purpose of this discussion� let
us assume that we have a structure PrimSock that implements the weakly typed interface
of Figure �� We de�ne datatypes to represent the void types	

datatype �a stream � STREAM

datatype dgram � DGRAM

datatype passive � PASSIVE

datatype active � ACTIVE

The representation of sockets and socket addresses is independent of these types	

datatype ��a� �b	 sock � SOCK of PrimSock�sock

datatype �a sock�addr � SOCKADDR of PrimSock�sock�addr

Most of the socket operations are quite simple	 they merely provide a translation from these
types to the PrimSock types� For example	

fun accept �SOCK s	 � let

val �s�� a	 � PrimSock�accept s

in

�SOCK s�� SOCKADDR a	

end

Note that the inferred type of this function is unconstrained	

val accept � ��a� �b	 sock 
� ���c� �d	 sock � �e sock�addr	

The type gets constrained to the safer interface of Figure � by signature matching on the
implementation structure�

One other aspect of the implementation deserves comment� There is an obvious tension
between sharing the internal representation of sockets among the various implementation
modules �e�g�� Sock� IPSock� and UnixSock�� and providing abstract interfaces� There are
a number of ways to deal with this� One approach is to �rst de�ne the modules without
signatures �or with signatures that reveal the internal representation types�� and then to
rebind the structure names with the �nal signature constraints�� The compilation manager
�CM� 
Blu�� for the Standard ML of New Jersey system 
AM�� provides a more elegant
way of doing this� CM organizes source �les into source groups� and provides a mechanism

�Traditional SML systems de�ne a linear order on the processing of top�level declarations �including
modules��

�



for limiting which modules are exported outside the group� Using this feature� we can
collect the representation types in an internal module that is available to the other modules
in the source group� but not outside the group�

� Extending the interface

The main limitation of this approach is that it only works because the system is closed�
there is no way to de�ne new �avors of sockets� We can open up the system by introducing
a generic socket structure for creating fully polymorphic sockets	

structure GenericSock � sig

val socket � �Sock�addr�family � Sock�sock�type	 
� ��a� �b	 Sock�sock

end � struct ��� end

Introducing such a structure allows the user to �spoof� arbitrary sockets� so the system is
no longer statically type safe �although� errors will still be caught at run�time�� This is a
trade�o� between complete type security and extensibility�

Fortunately� it is easy to distinguish the programs that are type secure from those that
are not� Since the user must use GenericSock to circumvent the type restrictions� we know
that a program that is free of references to GenericSock will be safe �this is analogous to
the �UNSAFE� keyword in Modula����

� Conclusions

�� Limitations of this approach ��

Acknowledgements

The designs presented here are part of an ongoing e�ort to develop new APIs for Standard
ML 
GE��� The design in Section � was the �rst design proposed by the author� Dave
Berry pointed out the lack of type security in the design� and suggested the approach of
Section � as a counter proposal� This served as motivation for improving the �rst design�
which lead to the �nal approach described�

References


AM�� Appel� A� W� and D� B� MacQueen� Standard ML of New Jersey� In Program�
ming Language Implementation and Logic Programming� vol� ��� of Lecture
Notes in Computer Science� New York� N�Y�� August ����� Springer�Verlag�
pp� �����


Blu�� Blume� M� CM� A Compilation Manager for SML�NJ �User Manual�� �����
Included in the SML�NJ distribution�

�




GE�� Gansner� E� R� and J� H� R� �Eds�� �eds��� The Standard ML Basis Library
Reference Manual� Unpublished draft� �����


HAB��� Hammond� K�� L� Augustsson� B� Boutel� W� Burton� J� Fairbairn� J� Fasel�
A� Gordon� M� Guzman� J� Hughes� T� Johnsson� M� Jones� D� Kieburtz�
R� Nikhil� W� Partain� J� Peterson� S� P� Jones� and P� Wadler� Report on
the Programming Language Haskell �Version ����� June �����


HTA��� Hall� M�� M� Tow�q� G� Arnold� D� Treadwell� and H� Sanders� Windows Sock�
ets� An Open Interface for Network Programming under Microsoft Windows
�Version ����� January �����


LMKQ�� Le�er� S� J�� M� K� McKusick� M� J� Karels� and J� S� Quarterman� The Design
and Implementation of the 	��BSD UNIX Operating System� Addison Wesley�
Reading� Mass�� �����


Nye�� Nye� A� X Protocol Reference Manual� vol� �� O�Reilly � Associates� Inc�� �����


QS�� Quinn� B� and D� Shute� Windows Sockets Network Programming� Addison�
Wesley� Reading� Massachusetts� �����


Ste�� Stevens� W� R� UNIX Network Programming� Prentice Hall� Englewood Cli�s�
New Jersey� �����

��


