A safe interface to sockets

Draft

John H. Reppy
AT&T Research
Murray Hill, NJ

May 28, 1996

1 Introduction

One of the arguments for using a higher-level language, such as Standard ML (SML), is
the greater degree of static checking provided by the language’s type system compared with
more traditional systems programming languages. For example, all I/O descriptors in C
are the same type (i.e., int), which can lead to mismatches between operations and the file
descriptors that they are applied to. While the operating system will catch such type errors
at run-time, it is much better to detect them statically at compile-time than to leave them
to be caught during testing or after deployment in the field. Type checking is a weak form
of program verification, but it has the key advantage that it is exhaustive and it scales to
large systems.

When designing SML versions of standard systems APIs,! we should take advantage
of the more powerful type system provided by the language, and provide as much static
type security as possible. At the same time, we must be careful not to make the API too
restrictive. It is important that the common patterns of usage found in C be allowed.

This paper describes the design of a type-safe sockets API for SML, which has been
implemented as part of the Standard ML of New Jersey (SML/NJ) system. The interface
exploits a non-standard use of polymorphism to provide flexible type safety. Before present-
ing the final design, we present two earlier attempts at designing a sockets API for SML:
the first of these fails to provide adequate type safety, while the second lacks flexibility. It is
hoped that this exposition will aid the design of other system programming APIs for SML.
The interface is part of the Standard ML Standard Library, which is being developed as a
collaboration between a number of SML implementations [GE96].

2 Sockets

Sockets are an abstraction for inter-process communication (IPC) that were introduced as
part of the Berkeley version of UNIX in 1982. They have become a de facto standard for
network communication, and are supported by most major operating systems (including PC

! Application program interface.

systems). Providing a complete API for sockets is an important requirement for a language
to be useful for real-world system’s programming.

In this section, we give a brief overview of Berkeley sockets, which should be sufficient
for understanding the main points of the paper. For a more thorough treatment of sockets
and network programming, there are many references on the subject: Stevens describes the
use of sockets in UNIX systems [Ste90], while the socket programming interface for Microsoft

Windows is described in [HTA193] and [QS95].

The sockets API supports two styles of IPC over an abstraction of the underlying net-
work protocol:? stream sockets provide virtual circuits between pairs of processes, and
datagram sockets provide connectionless packet-based communication. In stream-based in-
teraction, the server allocates a master socket that is used to accept connections from clients.
The server then listens on the master socket for connection requests from clients; each re-
quest is allocated a new socket that the server uses to communicate with that particular
client. As the name suggests, stream-based communication is done as a stream of bytes, not
as discrete packets. Connectionless communication is more symmetric: messages are sent
to a specific port at a specific address. While datagram sockets provide better performance,
messages may be lost or received out of order, which requires additional programming by
the client.?

A summary of the socket operations is given in Table 1; the second column notes which
type of socket the operation expects (stream or datagram). In addition to these basic

Table 1: Summary of socket operations

Operation Socket type Description

socket Both Create a socket

bind Both Bind a socket to a network address
listen Stream Enable a socket for listening
accept Stream Listen for client connections
connect Stream Connect to a server

recv Stream Read data

send Stream Write data

recvfrom Datagram Read a datagram

sendto Datagram Write a datagram

close Both Close a socket

shutdown Stream Shutdown a connection

operations, the sockets API also supports a large collection of operations for controlling the
behavior of sockets, but we do not discuss them here.

The standard C API for sockets provides little type security, and there are a number of
“type” errors that can arise:

1. One of the most common errors is getting the byte-order (little-endian vs. big-endian)
of the socket addresses wrong. When the network byte-order, which is defined to be

2 All implementations of sockets support the TCP/IP and UDP protocols, but others are often supported.
3There are reliable datagram sockets, but the are not commonly supported.

big-endian, agrees with the machine byte-order these errors do not show up during
testing, but will cause problems when the application is ported to a little-endian
machine.

2. There are conflicts between operations on sockets and operations on other kinds of
I/O descriptors. This is because all UN1x I/O descriptors are represented by the same

type (int).

3. There are conflicts between operations on stream sockets and operations on datagram
sockets.

4. There are conflicts between operations on a server’s master socket and operations on
connected sockets.

5. There are conflicts between operations that are specific to particular network proto-
cols.

We show in the sequel that these errors can be prevented by the proper API design, without
loss of programmer flexibility.

3 A first attempt

The simplest approach to an SML sockets API is a direct translation of the C API, but this
does not address any of the problems mentioned above. A better approach is to introduce
abstract types for the various types in the API, such as sockets and addresses. This interface
is given in Figure 1. By making socket addresses into an abstract type (sock_addr), we

type addr_family
type sock_type
type sock

type sock_addr

type in_flags = {peek : bool, oob : bool}
type out_flags = {don’t_route : bool, oob : bool}

val socket : (addr_family * sock_type) -> sock

val bind : (sock * sock_addr) -> unit

val listen : (sock * int) -> unit

val accept : sock -> (sock * sock_addr)

val connect : (sock # sock_addr) -> unit

val recv : (sock * in_flags) —-> vector

val send : (sock * vector * out_flags) -> int

val recvFrom : (sock # in_flags) -> (vector * sock_addr)

val sendTo : (sock * sock_addr * vector * out_flags) -> int
val close : sock -> unit

val shutdown : (sock * shutdown_mode) —> unit

Figure 1: A monomorphic sockets interface

protect the programmer from byteorder errors and promote portability. This interface also
ensures that sockets are not confused with other types of I/O descriptors.

While this interface provides more type security than found in the C API, it is quite
easy to misuse the operations. For example, the connect operation is only meaningful on
STREAM sockets, but there is nothing in the interfaces to prevent a program from attempting a
connect on a DGRAM socket. Furthermore, socket addresses have different formats depending
on their domain, but our interface does not place any constraints on them. While these
errors are detected at run-time by the operating system, it goes against the spirit of ML to
rely on dynamic type checking.

4 Improving the safety of the interface

One standard approach that we can use to improve the type security of the sockets API is
to introduce different types for the different kinds of sockets and socket addresses. We can
use the SML module system to organize the API into a collection of modules with common
interfaces, but different types. Figure 2 gives such an interface. The structure InSock
defines internet domain sockets, while UNIX domain sockets are defined by UnSock. The
four socket types (InSock.DGram.sock, etc.) are different, which ensures type safety. In the
case of addresses, each top-level structure (InSock and UnSock) constrains the sock_addr
types in its substructures to be the same. The address family and socket type arguments
to the socket creation functions are implicit in the containing module.

While this approach provides sufficient type security, it has several disadvantages. First,
there are many different instances of the same operation (e.g., two different bind opera-
tions per supported domain). This flys in the face of one of the design goals of Berkeley
sockets: namely, providing a common interface to different underlying network transport
layers [LMKQ89]. Furthermore, this design loses some necessary flexibilty. For example,
some applications, such as the X Window System Protocol [Nye90], are based on a particu-
lar socket type (e.g., stream or datagram), but support multiple domains (e.g., both UNix
and internet). Because the socket I/O operations are specific to a particular socket type, a
given application of an I/O operation is restricted to sockets of a specific type and domain.
Writing code that could dynamically support multiple domains would require introducing
new abstraction layers, and would cause significant inconvenience for programmers.

It is possible to avoid this problem by introducing additional types and coercions between
the various types, but this would greatly increase the size of an already large API, and would
be cumbersome to program with. In the next section, we present a different approach, which
is based on a technique we call constrained polymorphism.

5 A safe and flexible interface

What we need is a restricted kind of polymorphism. Suppose that we had the types:

type in_addr (*x INet domain addresses *)

type in_strm_sock (* INet domain stream sockets (TCP) *)
type in_dgram_sock (* INet domain datagram sockets (UDP) *)
type un_addr (* Uniz domain addresses *)

type un_strm_sock (* Uniz domain stream sockets *)

type un_dgram_sock (* Uniz domain datagram sockets *)

signature SOCKET_BASE =
sig
type sock
type sock_addr
type in_flags = {peek : bool, oob : bool}
type out_flags = {don’t_route : bool, oob : bool}
val socket : unit -> sock

val bind : (sock * sock_addr) -> unit
val close : sock -> unit
end

signature DGRAM_SOCKET =
sig
include SOCKET_BASE
val recvFrom : (sock * in_flags) -> (vector * sock_addr)
val sendTo : (sock * sock_addr * vector * out_flags) -> int
end

signature STREAM_SOCKET =

sig

include SOCKET_BASE

val connect : sock * sock_addr -> unit

val listen : (sock * int) -> unit

val accept : sock -> (sock * sock_addr)

val shutdown : (sock * shutdown_mode) -> unit

val recv : (sock * in_flags) -> vector

val send : (sock * vector #* out_flags) -> int
end

structure InSock : sig
structure DGram : DGRAM_SOCKET
structure Strm : STREAM_SOCKET
sharing type DGram.sock_addr = Strm.sock_addr
val addr : (inet_addr * port) -> DGram.sock_addr
end =

structure UnSock : sig
structure DGram : sig
include DGRAM_SOCKET
val sockPair : unit -> (sock * sock)
end
structure Strm : sig
include STREAM_SOCKET
val sockPair : unit -> (sock * sock)
end
sharing type DGram.sock_addr = Strm.sock_addr
val addr : string -> DGram.sock_addr
end =

Figure 2: The module-based interface

Then we want to constrain the type of accept to be one of:

val accept : in_strm_sock -> (in_strm_sock * in_addr)
val accept : un_strm_sock -> (un_strm_sock * un_addr)

Or more generally:
V(e, B) € {(in_strm_sock, in_addr), (un_strm_sock, un addr)} (o — (a x f))

The type of accept is constrained in two ways:

1. The address and socket it returns has the same domain as its argument.

2. The argument and result socket must both be stream sockets.

In general, we cannot specify such type constraints in SML, but there is a trick that we can
use in this case. We make the socket type into a type generator with two arguments: one
for the domain and one for the type of socket.

type (a, ’b) sock
Likewise, we make the socket address type a type generator of one argument (the domain):
type ’a sock_addr

For a function such as accept, we can then enforce the first constraint by giving it the
following type:

val accept : (’a, ’b) sock -> ((’a, ’b) sock * ’a sock_addr)

This still leaves the problem of restricting accept to stream sockets. To enforce this con-
straint, we introduce new abstract types to be the instances of the type arguments to sock
and sock_addr:

type dgram
type stream

We can then define the type of accept to be:

val accept : (’a, stream) sock -> ((’a, stream) sock * ’a sock_addr)

The stream and dgram types are void types — they have no values, but merely serve as
witnesses to enforce the various constraints in the signatures.* As shown below, we also
define void types for the network domains. We then define multiple instances of the socket
function; one for each combination of socket type and domain. Internally, these sockets are
all the same type, but we use abstraction to make them appear distinct.

We can further improve the security of the interface by distinguishing between the
passive socket used by a server to accept new connections and the active sockets used to
communicate. We do this by parameterizing the stream type, and introducing two new
void types:

*Since SML doesn’t actually have void types, these are represented by unit types internally, but the
values are not exported outside the implementation.

type ’a stream
type passive
type active

And we change the type of accept to:

val accept : (’a, passive stream) sock
-> ((’a, active stream) sock * ’a sock_addr)

With this refinement, we can now present the complete interface, which is given in Figure 3.
Note that accept and listen are to restricted passive stream sockets, while connect re-

type (a, ’b) sock
type ’a sock_addr

type dgram
type ’a stream
type passive
type active

val accept : (’a, passive stream) sock
-> ((’a, active stream) sock * ’a sock_addr)
val listen : ((’a, passive stream) sock * int) -> unit
val bind : ((Pa, ’b) sock * ’a sock_addr) -> unit
val connect : ((’a, active stream) sock * ’a sock_addr) -> unit
val close : (Pa, ’b) sock —> unit
val recv : ((Pa, active stream) sock * in_flags) -> vector
val send : ((Pa, active stream) sock * vector # out_flags) -> int
val recvFrom : ((’a, dgram) sock * in_flags) -> (vector * ’a sock_addr)
val sendTo : ((’a, dgram) sock * ’a sock_addr * vector * out_flags)
-> int

Figure 3: A polymorphic sockets interface

quires an active socket. Likewise, the stream I/O operations, send and recv, also require
active stream sockets.

This use of parameterized type generators gives rise to something similar to a subtyping
hierarchy. For example, (ip, dgram) sock might be viewed as a subtype of (ip, ’b)
sock. Other mechanisms for supporting type hierarchies, such as Haskell’s type classes
[HABT95], can also capture this relationship. Our mechanism goes further, however, since
it also establishes constraints between different types (e.g., the domain of the socket and
socket address in the accept operation).

structure IPSock : sig
type ip

val addr : (inet_addr * int) -> ip sock_addr
val udpSocket : unit -> (ip, dgram) sock

val tcpSocket : unit -> (ip, ’a stream) sock
end = struct ... end

structure UnixSock : sig
type unix

val addr : string —> unix sock_addr

val dgramSocket : unit -> (unix, dgram) sock
val strmSocket : unit -> (unix, ’a stream) sock
end = struct ... end

5.1 Implementation

The implementation of this approach is quite simple. For the purpose of this discussion, let
us assume that we have a structure PrimSock that implements the weakly typed interface
of Figure 1. We define datatypes to represent the void types:

datatype ’a stream = STREAM
datatype dgram = DGRAM
datatype passive = PASSIVE
datatype active = ACTIVE

The representation of sockets and socket addresses is independent of these types:

datatype (’a, ’b) sock = SOCK of PrimSock.sock
datatype ’a sock_addr = SOCKADDR of PrimSock.sock_addr

Most of the socket operations are quite simple: they merely provide a translation from these
types to the PrimSock types. For example:

let

fun accept (SOCK s) =
= PrimSock.accept s

val (s?, a)
in

(SOCK s’, SOCKADDR a)
end

Note that the inferred type of this function is unconstrained:
val accept : (’a, ’b) sock -> ((’c, ’d) sock * ’e sock_addr)

The type gets constrained to the safer interface of Figure 3 by signature matching on the
implementation structure.

One other aspect of the implementation deserves comment. There is an obvious tension
between sharing the internal representation of sockets among the various implementation
modules (e.g., Sock, IPSock, and UnixSock), and providing abstract interfaces. There are
a number of ways to deal with this. One approach is to first define the modules without
signatures (or with signatures that reveal the internal representation types), and then to
rebind the structure names with the final signature constraints.® The compilation manager
(CM) [Blu96] for the Standard ML of New Jersey system [AM91] provides a more elegant
way of doing this. CM organizes source files into source groups, and provides a mechanism

®Traditional SML systems define a linear order on the processing of top-level declarations (including
modules).

for limiting which modules are exported outside the group. Using this feature, we can
collect the representation types in an internal module that is available to the other modules
in the source group, but not outside the group.

6 Extending the interface

The main limitation of this approach is that it only works because the system is closed,
there is no way to define new flavors of sockets. We can open up the system by introducing
a generic socket structure for creating fully polymorphic sockets:

structure GenericSock : sig
val socket : (Sock.addr_family * Sock.sock_type) -> (’a, ’b) Sock.sock
end = struct ... end

Introducing such a structure allows the user to “spoof” arbitrary sockets, so the system is
no longer statically type safe (although, errors will still be caught at run-time). This is a
trade-off between complete type security and extensibility.

Fortunately, it is easy to distinguish the programs that are type secure from those that
are not. Since the user must use GenericSock to circumvent the type restrictions, we know
that a program that is free of references to GenericSock will be safe (this is analogous to
the “UNSAFE” keyword in Modula-3).

7 Conclusions

[[Limitations of this approach |]

Acknowledgements

The designs presented here are part of an ongoing effort to develop new APIs for Standard
ML [GE96]. The design in Section 3 was the first design proposed by the author. Dave
Berry pointed out the lack of type security in the design, and suggested the approach of
Section 4 as a counter proposal. This served as motivation for improving the first design,
which lead to the final approach described.

References

[AM91] Appel, A. W. and D. B. MacQueen. Standard ML of New Jersey. In Program-
ming Language Implementation and Logic Programming, vol. 528 of Lecture
Notes in Computer Science, New York, N.Y., August 1991. Springer-Verlag,
pp. 1-26.

[Blu96] Blume, M. CM: A Compilation Manager for SML/NJ (User Manual), 1996.
Included in the SML/NJ distribution.

[GE96]

[HAB*95]

[HTA+93]

[LMKQ89]

[Nye90]

[QS95]

[Ste90]

Gansner, E. R. and J. H. R. (Eds.) (eds.). The Standard ML Basis Library
Reference Manual. Unpublished draft, 1996.

Hammond, K., L. Augustsson, B. Boutel, W. Burton, J. Fairbairn, J. Fasel,
A. Gordon, M. Guzman, J. Hughes, T. Johnsson, M. Jones, D. Kieburtz,
R. Nikhil, W. Partain, J. Peterson, S. P. Jones, and P. Wadler. Report on
the Programming Language Haskell (Version 1.3), June 1995.

Hall, M., M. Towfiq, G. Arnold, D. Treadwell, and H. Sanders. Windows Sock-
ets: An Open Interface for Network Programming under Microsoft Windows
(Version 1.1), January 1993.

Leffler, S. J., M. K. McKusick, M. J. Karels, and J. S. Quarterman. The Design
and Implementation of the 4.3BSD UNIX Operating System. Addison Wesley,
Reading, Mass., 1989.

Nye, A. X Protocol Reference Manual, vol. 0. O'Reilly & Associates, Inc., 1990.

Quinn, B. and D. Shute. Windows Sockets Network Programming. Addison-
Wesley, Reading, Massachusetts, 1995.

Stevens, W. R. UNIX Network Programming. Prentice Hall, Englewood Cliffs,
New Jersey, 1990.

10

