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Preface

A precise description of a programming language is a prerequisite for its im-
plementation and for its use. The description can take many forms, each
suited to a different purpose. A common form is a reference manual, which
is usually a careful narrative description of the meaning of each construction
in the language, often backed up with a formal presentation of the gram-
mar (for example, in Backus-Naur form). This gives the programmer enough
understanding for many of his purposes. But it is ill-suited for use by an
implementer, or by someone who wants to formulate laws for equivalence of
programs, or by a programmer who wants to design programs with mathe-
matical rigour.

This document is a formal description of both the grammar and the mean-
ing of a language which is both designed for large projects and widely used.
As such, it aims to serve the whole community of people seriously concerned
with the language. At a time when it is increasingly understood that pro-
grams must withstand rigorous analysis, particular for systems where safety
is critical, a rigorous language presentation is even important for negotiators
and contractors; for a robust program written in an insecure language is like
a house built upon sand.

Most people have not looked at a rigorous language presentation before.
To help them particularly, but also to put the present work in perspective
for those more theoretically prepared, it will be useful here to say some-
thing about three things: the nature of Standard ML, the task of language
definition in general, and the form of the present Definition.

Standard ML

Standard ML is a functional programming language, in the sense that the
full power of mathematical functions is present. But it grew in response to a
particular programming task, for which it was equipped also with full imper-
ative power, and a sophisticated exception mechanism. It has an advanced
form of parametric modules, aimed at organised development of large pro-
grams. Finally it is strongly typed, and it was the first language to provide a
particular form of polymorphic type which makes the strong typing remark-
ably flexible. This combination of ingredients has not made it unduly large,
but their novelty has been a fascinating challenge to semantic method (of
which we say more below).
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ML has evolved over fourteen years as a fusion of many ideas from many
people. This evolution is described in some detail in Appendix E of the
book, where also we acknowledge all those who have contributed to it, both
in design and in implementation.

‘ML’ stands for meta language; this is the term logicians use for a language
in which other (formal or informal) languages are discussed and analysed.
Originally ML was conceived as a medium for finding and performing proofs
in a logical language. Conducting rigorous argument as dialogue between
person and machine has been a strong research interest at Edinburgh and
elsewhere, throughout these fourteen years. The difficulties are enormous,
and make stern demands upon the programming language which is used for
this dialogue. Those who are not familiar with computer-assisted reasoning
may be surprised that a programming language, which was designed for this
rather esoteric activity, should ever lay claim to being generally useful. On
reflection, they should not be surprised. LISP is a prime example of a lan-
guage invented for esoteric purposes and becoming widely used. LISP was
invented for use in artificial intelligence (AI); the important thing about AI
here is not that it is esoteric, but that it is difficult and varied; so much
so, that anything which works well for it must work well for many other
applications too.

The same can be said about the initial purpose of ML, but with a dif-
ferent emphasis. Rigorous proofs are complex things, which need varied and
sophisticated presentation – particularly on the screen in interactive mode.
Furthermore the proof methods, or strategies, involved are some of the most
complex algorithms which we know. This all applies equally to AI, but one
demand is made more strongly by proof than perhaps by any other applica-
tion: the demand for rigour.

This demand established the character of ML. In order to be sure that,
when the user and the computer claim to have together performed a rigorous
argument, their claim is justified, it was seen that the language must be
strongly typed. On the other hand, to be useful in a difficult application, the
type system had to be rather flexible, and permit the machine to guide the
user rather than impose a burden upon him. A reasonable solution was found,
in which the machine helps the user significantly by inferring his types for
him. Thereby the machine also confers complete reliability on his programs,
in this sense: If a program claims that a certain result follows from the rules
of reasoning which the user has supplied, then the claim may be fully trusted.

The principle of inferring useful structural information about programs is
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also represented, at the level of program modules, by the inference of signa-
tures. Signatures describe the interfaces between modules, and are vital for
robust large-scale programs. When the user combines modules, the signature
discipline prevents him from mismatching their interfaces. By programming
with interfaces and parametric modules, it becomes possible to focus on the
structure of a large system, and to compile parts of it in isolation from one
another – even when the system is incomplete.

This emphasis on types and signatures has had a profound effect on the
language Definition. Over half this document is devoted to inferring types
and signatures for programs. But the method used is exactly the same as for
inferring what values a program delivers; indeed, a type or signature is the
result of a kind of abstract evaluation of a program phrase.

In designing ML, the interplay among three activities – language design,
definition and implementation – was extremely close. This was particularly
true for the newest part, the parametric modules. This part of the language
grew from an initial proposal by David MacQueen, itself highly developed;
but both formal definition and implementation had a strong influence on the
detailed design. In general, those who took part in the three activities cannot
now imagine how they could have been properly done separately.

Language Definition

Every programming language presents its own conceptual view of computa-
tion. This view is usually indicated by the names used for the phrase classes
of the language, or by its keywords: terms like package, module, structure,
exception, channel, type, procedure, reference, sharing, . . . . These terms also
have their abstract counterparts, which may be called semantic objects; these
are what people really have in mind when they use the language, or discuss
it, or think in it. Also, it is these objects, not the syntax, which represent the
particular conceptual view of each language; they are the character of the
language. Therefore a definition of the language must be in terms of these
objects.

As is commonly done in programming language semantics, we shall loosely
talk of these semantic objects as meanings. Of course, it is perfectly possible
to understand the semantic theory of a language, and yet be unable to to
understand the meaning of a particular program, in the sense of its intention
or purpose. The aim of a language definition is not to formalise everything
which could possibly be called the meaning of a program, but to establish
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a theory of semantic objects upon which the understanding of particular
programs may rest.

The job of a language-definer is twofold. First – as we have already sug-
gested – he must create a world of meanings appropriate for the language, and
must find a way of saying what these meanings precisely are. Here, he meets
a problem; notation of some kind must be used to denote and describe these
meanings – but not a programming language notation, unless he is passing
the buck and defining one programming language in terms of another. Given
a concern for rigour, mathematical notation is an obvious choice. Moreover,
it is not enough just to write down mathematical definitions. The world
of meanings only becomes meaningful if the objects possess nice properties,
which make them tractable. So the language-definer really has to develop a
small theory of his meanings, in the same way that a mathematician develops
a theory. Typically, after initially defining some objects, the mathematician
goes on to verify properties which indicate that they are objects worth study-
ing. It is this part, a kind of scene-setting, which the language-definer shares
with the mathematician. Of course he can take many objects and their theo-
ries directly from mathematics, such as functions, relations, trees, sequences,
. . . . But he must also give some special theory for the objects which make
his language particular, as we do for types, structures and signatures in this
book; otherwise his language definition may be formal but will give no in-
sight.

The second part of the definer’s job is to define evaluation precisely. This
means that he must define at least what meaning, M , results from evaluating
any phrase P of his language (though he need not explain exactly how the
meaning results; that is he need not give the full detail of every computation).
This part of his job must be formal to some extent, if only because the phrases
P of his language are indeed formal objects. But there is another reason for
formality. The task is complex and error-prone, and therefore demands a high
level of explicit organisation (which is, largely, the meaning of ‘formality’);
moreover, it will be used to specify an equally complex, error-prone and
formal construction: an implementation.

We shall now explain the keystone of our semantic method. First, we
need a slight but important refinement. A phrase P is never evaluated in
vacuo to a meaning M , but always against a background; this background
– call it B – is itself a semantic object, being a distillation of the meanings
preserved from evaluation of earlier phrases (typically variable declarations,
procedure declarations, etc.). In fact evaluation is background-dependent –

vi



M depends upon B as well as upon P .
The keystone of the method, then, is a certain kind of assertion about

evaluation; it takes the form

B ` P ⇒M

and may be pronounced: ‘Against the background B, the phrase P evaluates
to the meaning M ’. The formal purpose of this Definition is no more, and no
less, than to decree exactly which assertions of this form are true. This could
be achieved in many ways. We have chosen to do it in a structured way, as
others have, by giving rules which allow assertions about a compound phrase
P to be inferred from assertions about its constituent phrases P1, . . . , Pn.

The form of the Definition1

We have written the Definition in a form suggested by the previous remarks.
That is, we have defined our semantic objects in mathematical notation
which is completely independent of Standard ML, and we have developed
just enough of their theory to give sense to our rules of evaluation. Following
another suggestion above, we have factored our task by describing abstract
evaluation – the inference and checking of types and signatures (which can
be done at compile-time) – completely separately from concrete evaluation.
It really is a factorisation, because a full value in all its glory – you can think
of it as a concrete object with a type attached – never has to be presented.

The resulting document is, we hope, valuable as the essential point of ref-
erence for Standard ML. If it is to play this role well, it must be supplemented
by other literature. Some expository books have already been written, and
this Definition will be useful as a background reference for their readers. We
have also become convinced, while writing the Definition, that we could not
discuss many questions without making it far too long. Such questions are:
Why were certain design choices made? What are their implications for pro-
gramming? Was there a good alternative meaning for some constructs, or
was our hand forced? What different forms of phrase are equivalent? What
is the proof of certain claims? Many of these questions will not be answered

1The Definition has evolved through a sequence of three previous versions, circulated
as Technical Reports. For those who have followed the sequence, we should point out
that the treatment of equality types and of admissibility has been slightly modified in
this publication to meet the claim for principal signatures. The changes are mainly in
Sections 4.9, 5.5 and 5.13 and in the inference rules 19, 20, 29 and 65.
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by pedagogic texts either. So we are writing a Commentary on the Defini-
tion which will assist people in reading it, and which will serve as a bridge
between the Definition and other texts.

Edinburgh
August 1989
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1 INTRODUCTION 1

1 Introduction

This document formally defines Standard ML.
To understand the method of definition, at least in broad terms, it helps

to consider how an implementation of ML is naturally organised. ML is an
interactive language, and a program consists of a sequence of top-level decla-
rations; the execution of each declaration modifies the top-level environment,
which we call a basis, and reports the modification to the user.

In the execution of a declaration there are three phases: parsing, elabora-
tion, and evaluation. Parsing determines the grammatical form of a declara-
tion. Elaboration, the static phase, determines whether it is well-typed and
well-formed in other ways, and records relevant type or form information
in the basis. Finally evaluation, the dynamic phase, determines the value
of the declaration and records relevant value information in the basis. Cor-
responding to these phases, our formal definition divides into three parts:
grammatical rules, elaboration rules, and evaluation rules. Furthermore, the
basis is divided into the static basis and the dynamic basis; for example, a
variable which has been declared is associated with a type in the static basis
and with a value in the dynamic basis.

In an implementation, the basis need not be so divided. But for the
purpose of formal definition, it eases presentation and understanding to keep
the static and dynamic parts of the basis separate. This is further justified by
programming experience. A large proportion of errors in ML programs are
discovered during elaboration, and identified as errors of type or form, so it
follows that it is useful to perform the elaboration phase separately. In fact,
elaboration without evaluation is just what is normally called compilation;
once a declaration (or larger entity) is compiled one wishes to evaluate it –
repeatedly – without re-elaboration, from which it follows that it is useful to
perform the evaluation phase separately.

A further factoring of the formal definition is possible, because of the
structure of the language. ML consists of a lower level called the Core lan-
guage (or Core for short), a middle level concerned with programming-in-the-
large called Modules, and a very small upper level called Programs. With
the three phases described above, there is therefore a possibility of nine com-
ponents in the complete language definition. We have allotted one section
to each of these components, except that we have combined the parsing,
elaboration and evaluation of Programs in one section. The scheme for the
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ensuing seven sections is therefore as follows:

Core Modules Programs
Syntax Section 2 Section 3

Static Semantics Section 4 Section 5 Section 8
Dynamic Semantics Section 6 Section 7

The Core provides many phrase classes, for programming convenience.
But about half of these classes are derived forms, whose meaning can be
given by translation into the other half which we call the Bare language.
Thus each of the three parts for the Core treats only the bare language; the
derived forms are treated in Appendix A. This appendix also contains a few
derived forms for Modules. A full grammar for the language is presented in
Appendix B.

In Appendices C and D the initial basis is detailed. This basis, divided
into its static and dynamic parts, contains the static and dynamic meanings
of all predefined identifiers.

The semantics is presented in a form known as Natural Semantics. It
consists of a set of rules allowing sentences of the form

A ` phrase⇒ A′

to be inferred, where A is often a basis (static or dynamic) and A′ a semantic
object – often a type in the static semantics and a value in the dynamic
semantics. One should read such a sentence as follows: “against the back-
ground provided by A, the phrase phrase elaborates – or evaluates – to the
object A′”. Although the rules themselves are formal the semantic objects,
particularly the static ones, are the subject of a mathematical theory which
is presented in a succinct form in the relevant sections. This theory, particu-
larly the theory of types and signatures, will benefit from a more pedagogic
treatment in other publications; the treatment here is probably the minimum
required to understand the meaning of the rules.

The robustness of the semantics depends upon theorems. Usually these
have been proven, but the proof is not included. In two cases, however,
they are presented as “claims” rather than theorems; these are the claim of
principal environments in Section 4.12, and the claim of principal signatures
in Section 5.13. We need further confirmation of our detailed proofs of these
claims, before asserting them as theorems.
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2 Syntax of the Core

2.1 Reserved Words

The following are the reserved words used in the Core. They may not (except
= ) be used as identifiers.

abstype and andalso as case do datatype else

end exception fn fun handle if in infix

infixr let local nonfix of op open orelse

raise rec then type val with withtype while

( ) [ ] { } , : ; ... _ | = => -> #

2.2 Special constants

An integer constant is any non-empty sequence of digits, possibly preceded
by a negation symbol (~). A real constant is an integer constant, possibly
followed by a point (.) and one or more digits, possibly followed by an
exponent symbol E and an integer constant; at least one of the optional
parts must occur, hence no integer constant is a real constant. Examples:
0.7 3.32E5 3E~7 . Non-examples: 23 .3 4.E5 1E2.0 .

We assume an underlying alphabet of 256 characters (numbered 0 to 255)
such that the characters with numbers 0 to 127 coincide with the ASCII
character set. A string constant is a sequence, between quotes ("), of zero
or more printable characters (i.e., numbered 33–126), spaces or escape se-
quences. Each escape sequence starts with the escape character \ , and
stands for a character sequence. The escape sequences are:

\n A single character interpreted by the system as end-of-line.
\t Tab.
\^c The control character c, where c may be any character with

number 64–95. The number of \^c is 64 less than the number
of c.

\ddd The single character with number ddd (3 decimal digits de-
noting an integer in the interval [0, 255]).

\" "

\\ \

\f · ·f\ This sequence is ignored, where f · ·f stands for a sequence of
one or more formatting characters.
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Var (value variables ) long
Con (value constructors ) long
ExCon (exception constructors) long
TyVar (type variables )
TyCon (type constructors ) long
Lab (record labels )
StrId (structure identifiers ) long

Figure 1: Identifiers

The formatting characters are a subset of the non-printable characters
including at least space, tab, newline, formfeed. The last form allows long
strings to be written on more than one line, by writing \ at the end of one
line and at the start of the next.

We denote by SCon the class of special constants, i.e., the integer, real,
and string constants; we shall use scon to range over SCon.

2.3 Comments

A comment is any character sequence within comment brackets (* *) in
which comment brackets are properly nested. An unmatched comment bracket
should be detected by the compiler.

2.4 Identifiers

The classes of identifiers for the Core are shown in Figure 1. We use var ,
tyvar to range over Var, TyVar etc. For each class X marked “long” there
is a class longX of long identifiers; if x ranges over X then longx ranges over
longX. The syntax of these long identifiers is given by the following:

longx ::= x identifier
strid1.···.stridn.x qualified identifier (n ≥ 1)

The qualified identifiers constitute a link between the Core and the Mod-
ules. Throughout this document, the term “identifier”, occurring without an
adjective, refers to non-qualified identifiers only.

An identifier is either alphanumeric: any sequence of letters, digits, primes
(’) and underbars ( ) starting with a letter or prime, or symbolic: any non-
empty sequence of the following symbols

! % & $ # + - / : < = > ? @ \ ~ ‘ ^ | *
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In either case, however, reserved words are excluded. This means that for
example # and | are not identifiers, but ## and |=| are identifiers.
The only exception to this rule is that the symbol = , which is a reserved
word, is also allowed as an identifier to stand for the equality predicate. The
identifier = may not be re-bound; this precludes any syntactic ambiguity.

A type variable tyvar may be any alphanumeric identifier starting with a
prime; the subclass EtyVar of TyVar, the equality type variables, consists of
those which start with two or more primes. The subclass ImpTyVar of TyVar,
the imperative type variables, consists of those which start with one or two
primes followed by an underbar. The complement AppTyVar = TyVar \
ImpTyVar consists of the applicative type variables. The other six classes
(Var, Con, ExCon, TyCon, Lab and StrId) are represented by identifiers
not starting with a prime. However, * is excluded from TyCon, to avoid
confusion with the derived form of tuple type (see Figure 22). The class Lab
is extended to include the numeric labels 1 2 3 ···, i.e. any numeral not
starting with 0.

TyVar is therefore disjoint from the other six classes. Otherwise, the syn-
tax class of an occurrence of identifier id in a Core phrase (ignoring derived
forms, Section 2.7) is determined thus:

1. Immediately before “.” – i.e. in a long identifier – or in an open

declaration, id is a structure identifier. The following rules assume
that all occurrences of structure identifiers have been removed.

2. At the start of a component in a record type, record pattern or record
expression, id is a record label.

3. Elsewhere in types id is a type constructor, and must be within the
scope of the type binding or datatype binding which introduced it.

4. Elsewhere, id is an exception constructor if it occurs in the scope of an
exception binding which introduces it as such, or a value constructor
if it occurs in the scope of a datatype binding which introduced it as
such; otherwise it is a value variable.

It follows from the last rule that no value declaration can make a “hole”
in the scope of a value or exception constructor by introducing the same
identifier as a variable; this is because, in the scope of the declaration which
introduces id as a value or exception constructor, any occurrence of id in a
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pattern is interpreted as the constructor and not as the binding occurrence
of a new variable.

By means of the above rules a compiler can determine the class to which
each identifier occurrence belongs; for the remainder of this document we
shall therefore assume that the classes are all disjoint.

2.5 Lexical analysis

Each item of lexical analysis is either a reserved word, a numeric label, a
special constant or a long identifier. Comments and formatting characters
separate items (except within string constants; see Section 2.2) and are oth-
erwise ignored. At each stage the longest next item is taken.

2.6 Infixed operators

An identifier may be given infix status by the infix or infixr direc-
tive , which may occur as a declaration; this status only pertains to its use
as a var , a con or an excon within the scope (see below) of the directive.
(Note that qualified identifiers never have infix status.) If id has infix sta-
tus, then “exp1 id exp2” (resp. “pat1 id pat2”) may occur – in parentheses
if necessary – wherever the application “id{1=exp1,2=exp2}” or its derived
form “id(exp1,exp2)” (resp “id(pat1,pat2)”) would otherwise occur. On the
other hand, an occurrence of any long identifier (qualified or not) prefixed
by op is treated as non-infixed. The only required use of op is in prefixing a
non-infixed occurrence of an identifier id which has infix status; elsewhere op,
where permitted, has no effect. Infix status is cancelled by the nonfix di-
rective. We refer to the three directives collectively as fixity directives.

The form of the fixity directives is as follows (n ≥ 1):

infix 〈d〉 id1 ··· idn

infixr 〈d〉 id1 ··· idn

nonfix id1 ··· idn

where 〈d〉 is an optional decimal digit d indicating binding precedence. A
higher value of d indicates tighter binding; the default is 0. infix and
infixr dictate left and right associativity respectively; association is always
to the left for different operators of the same precedence. The precedence of
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infix operators relative to other expression and pattern constructions is given
in Appendix B.

The scope of a fixity directive dir is the ensuing program text, except
that if dir occurs in a declaration dec in either of the phrases

let dec in ··· end

local dec in ··· end

then the scope of dir does not extend beyond the phrase. Further scope
limitations are imposed for Modules.

These directives and op are omitted from the semantic rules, since they
affect only parsing.

2.7 Derived Forms

There are many standard syntactic forms in ML whose meaning can be ex-
pressed in terms of a smaller number of syntactic forms, called the bare lan-
guage. These derived forms, and their equivalent forms in the bare language,
are given in Appendix A.

2.8 Grammar

The phrase classes for the Core are shown in Figure 2. We use the variable
atexp to range over AtExp, etc.

The grammatical rules for the Core are shown in Figures 3 and 4.
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AtExp atomic expressions
ExpRow expression rows
Exp expressions
Match matches
Mrule match rules

Dec declarations
ValBind value bindings
TypBind type bindings
DatBind datatype bindings
ConBind constructor bindings
ExBind exception bindings

AtPat atomic patterns
PatRow pattern rows
Pat patterns

Ty type expressions
TyRow type-expression rows

Figure 2: Core Phrase Classes

The following conventions are adopted in presenting the grammatical
rules, and in their interpretation:

• The brackets 〈 〉 enclose optional phrases.

• For any syntax class X (over which x ranges) we define the syntax class
Xseq (over which xseq ranges) as follows:

xseq ::= x (singleton sequence)
(empty sequence)

(x1,···,xn) (sequence, n ≥ 1)

(Note that the “···” used here, meaning syntactic iteration, must not
be confused with “...” which is a reserved word of the language.)

• Alternative forms for each phrase class are in order of decreasing prece-
dence; this resolves ambiguity in parsing, as explained in Appendix B.

• L (resp. R) means left (resp. right) association.
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• The syntax of types binds more tightly than that of expressions.

• Each iterated construct (e.g. match, ···) extends as far right as pos-
sible; thus, parentheses may be needed around an expression which
terminates with a match, e.g. “fn match”, if this occurs within a
larger match.
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atexp ::= scon special constant
〈op〉longvar value variable
〈op〉longcon value constructor
〈op〉longexcon exception constructor
{ 〈exprow〉 } record
let dec in exp end local declaration
( exp )

exprow ::= lab = exp 〈 , exprow〉 expression row

exp ::= atexp atomic
exp atexp application (L)
exp1 id exp2 infixed application
exp : ty typed (L)
exp handle match handle exception
raise exp raise exception
fn match function

match ::= mrule 〈 | match〉

mrule ::= pat => exp

dec ::= val valbind value declaration
type typbind type declaration
datatype datbind datatype declaration
abstype datbind with dec end abstype declaration
exception exbind exception declaration
local dec1 in dec2 end local declaration
open longstrid1 ··· longstridn open declaration (n ≥ 1)

empty declaration
dec1 〈;〉 dec2 sequential declaration
infix 〈d〉 id1 ··· idn infix (L) directive
infixr 〈d〉 id1 ··· idn infix (R) directive
nonfix id1 ··· idn nonfix directive

valbind ::= pat = exp 〈and valbind〉
rec valbind

typbind ::= tyvarseq tycon = ty 〈and typbind〉

datbind ::= tyvarseq tycon = conbind 〈and datbind〉

conbind ::= 〈op〉con 〈of ty〉 〈 | conbind〉

exbind ::= 〈op〉excon 〈of ty〉 〈and exbind〉
〈op〉excon = 〈op〉longexcon 〈and exbind〉

Figure 3: Grammar: Expressions, Matches, Declarations and Bindings
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atpat ::= wildcard
scon special constant
〈op〉var variable
〈op〉longcon constant
〈op〉longexcon exception constant
{ 〈patrow〉 } record
( pat )

patrow ::= ... wildcard
lab = pat 〈 , patrow〉 pattern row

pat atpat atomic
〈op〉longcon atpat value construction
〈op〉longexcon atpat exception construction
pat1 con pat2 infixed value construction
pat1 excon pat2 infixed exception construction
pat : ty typed
〈op〉var〈: ty〉 as pat layered

ty ::= tyvar type variable
{ 〈tyrow〉 } record type expression
tyseq longtycon type construction
ty -> ty′ function type expression (R)
( ty )

tyrow ::= lab : ty 〈 , tyrow〉 type-expression row

Figure 4: Grammar: Patterns and Type expressions

2.9 Syntactic Restrictions

• No pattern may contain the same var twice. No expression row, pattern
row or type row may bind the same lab twice.

• No binding valbind , typbind , datbind or exbind may bind the same
identifier twice; this applies also to value constructors within a datbind .

• In the left side tyvarseq tycon of any typbind or datbind , tyvarseq must
not contain the same tyvar twice. Any tyvar occurring within the right
side must occur in tyvarseq .
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• For each value binding pat = exp within rec, exp must be of the form
fn match, possibly constrained by one or more type expressions. The
derived form of function-value binding given in Appendix A, page 80,
necessarily obeys this restriction.
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3 Syntax of Modules

For Modules there are further reserved words, identifier classes and derived
forms. There are no further special constants; comments and lexical analysis
are as for the Core. The derived forms for modules concern functors and
appear in Appendix A.

3.1 Reserved Words

The following are the additional reserved words used in Modules.

eqtype functor include sharing

sig signature struct structure

3.2 Identifiers

The additional syntax classes for Modules are SigId (signature identifiers) and
FunId (functor identifiers); they may be either alphanumeric – not starting
with a prime – or symbolic. The class of each identifier occurrence is de-
termined by the grammatical rules which follow. Henceforth, therefore, we
consider all identifier classes to be disjoint.

3.3 Infixed operators

In addition to the scope rules for fixity directives given for the Core syn-
tax, there is a further scope limitation: if dir occurs in a structure-level
declaration strdec in any of the phrases

let strdec in ··· end
local strdec in ··· end

struct strdec end

then the scope of dir does not extend beyond the phrase.
One effect of this limitation is that fixity is local to a generative structure

expression – in particular, to such an expression occurring as a functor body.
A more liberal scheme (which is under consideration) would allow fixity di-
rectives to appear also as specifications, so that fixity may be dictated by a
signature expression; furthermore, it would allow an open or include con-
struction to restore the fixity which prevailed in the structures being opened,
or in the signatures being included. This scheme is not adopted at present.
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3.4 Grammar for Modules

The phrase classes for Modules are shown in Figure 5. We use the variable
strexp to range over StrExp, etc. The conventions adopted in presenting the
grammatical rules for Modules are the same as for the Core. The grammat-
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StrExp structure expressions
StrDec structure-level declarations
StrBind structure bindings

SigExp signature expressions
SigDec signature declarations
SigBind signature bindings

Spec specifications
ValDesc value descriptions
TypDesc type descriptions
DatDesc datatype descriptions
ConDesc constructor descriptions
ExDesc exception descriptions
StrDesc structure descriptions
SharEq sharing equations

FunDec functor declarations
FunBind functor bindings
FunSigExp functor signature expressions
FunSpec functor specifications
FunDesc functor descriptions
TopDec top-level declarations

Figure 5: Modules Phrase Classes

ical rules are shown in Figures 6, 7 and 8.
It should be noted that functor specifications (FunSpec) cannot occur

in programs; neither can the associated functor descriptions (FunDesc) and
functor signature expressions (FunSigExp). The purpose of a funspec is to
specify the static attributes (i.e. functor signature) of one or more functors.
This will be useful, in fact essential, for separate compilation of functors.
If, for example, a functor g refers to another functor f then — in order to
compile g in the absence of the declaration of f — at least the specification of
f (i.e. its functor signature) must be available. At present there is no special
grammatical form for a separately compilable “chunk” of text – which we
may like to call call a module – containing a fundec together with a funspec
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specifying its global references. However, below in the semantics for Modules
it is defined when a declared functor matches a functor signature specified for
it. This determines exactly those functor environments (containing declared
functors such as f) into which the separately compiled “chunk” containing
the declaration of g may be loaded.
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strexp ::= struct strdec end generative
longstrid structure identifier
funid ( strexp ) functor application
let strdec in strexp end local declaration

strdec ::= dec declaration
structure strbind structure
local strdec1 in strdec2 end local

empty
strdec1 〈;〉 strdec2 sequential

strbind ::= strid 〈: sigexp〉 = strexp 〈and strbind〉

sigexp ::= sig spec end generative
sigid signature identifier

sigdec ::= signature sigbind single
empty

sigdec1 〈;〉 sigdec2 sequential

sigbind ::= sigid = sigexp 〈and sigbind〉

Figure 6: Grammar: Structure and Signature Expressions

3.5 Syntactic Restrictions

• No binding strbind , sigbind , or funbind may bind the same identifier
twice.

• No description valdesc, typdesc, datdesc, exdesc, strdesc or fundesc may
describe the same identifier twice; this applies also to value constructors
within a datdesc.
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spec ::= val valdesc value
type typdesc type
eqtype typdesc eqtype
datatype datdesc datatype
exception exdesc exception
structure strdesc structure
sharing shareq sharing
local spec1 in spec2 end local
open longstrid1 ··· longstridn open (n ≥ 1)
include sigid1 ··· sigidn include (n ≥ 1)

empty
spec1 〈;〉 spec2 sequential

valdesc ::= var : ty 〈and valdesc〉

typdesc ::= tyvarseq tycon 〈and typdesc〉

datdesc ::= tyvarseq tycon = condesc 〈and datdesc〉

condesc ::= con 〈of ty〉 〈 | condesc〉

exdesc ::= excon 〈of ty〉 〈and exdesc〉

strdesc ::= strid : sigexp 〈and strdesc〉

shareq ::= longstrid1 = ··· = longstridn structure sharing
(n ≥ 2)

type longtycon1 = ··· = longtyconn type sharing
(n ≥ 2)

shareq1 and shareq2 multiple

Figure 7: Grammar: Specifications
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fundec ::= functor funbind single
empty

fundec1 〈;〉 fundec2 sequence

funbind ::= funid ( strid : sigexp ) 〈: sigexp ′〉 = strexp functor binding
〈and funbind〉

funsigexp ::= ( strid : sigexp ) : sigexp′ functor signature expression

funspec ::= functor fundesc functor specification
empty

funspec1 〈;〉 funspec2 sequence

fundesc ::= funid funsigexp 〈and fundesc〉

topdec ::= strdec structure-level declaration
sigdec signature declaration
fundec functor declaration

Note: No topdec may contain, as an initial segment, a shorter top-
level declaration followed by a semicolon.

Figure 8: Grammar: Functors and Top-level Declarations

3.6 Closure Restrictions

The semantics presented in later sections requires no restriction on reference
to non-local identifiers. For example, it allows a signature expression to refer
to external signature identifiers and (via sharing or open ) to external
structure identifiers; it also allows a functor to refer to external identifiers of
any kind.

However, implementers who want to provide a simple facility for sep-
arate compilation may want to impose the following restrictions (ignoring
references to identifiers bound in the initial basis B0, which may occur any-
where):

1. In any signature binding sigid = sigexp , the only non-local references
in sigexp are to signature identifiers.

2. In any functor description funid ( strid : sigexp ) : sigexp′ , the only
non-local references in sigexp and sigexp ′ are to signature identifiers,
except that sigexp ′ may refer to strid and its components.
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3. In any functor binding funid ( strid : sigexp ) 〈: sigexp ′〉 = strexp ,
the only non-local references in sigexp, sigexp ′ and strexp are to functor
and signature identifiers, except that both sigexp ′ and strexp may refer
to strid and its components.

In the last two cases the final qualification allows, for example, sharing con-
straints to be specified between functor argument and result. (For a com-
pletely precise definition of these closure restrictions, see the comments to
rules 66 (page 48), 91 (page 52) and 96 (page 52) in the static semantics of
modules, Section 5.)

The significance of these restrictions is that they may ease separate com-
pilation; this may be seen as follows. If one takes a module to be a sequence
of signature declarations, functor specifications and functor declarations sat-
isfying the above restrictions then the elaboration of a module can be made
to depend on the initial static basis alone (in particular, it will not rely on
structures outside the module). Moreover, the elaboration of a module can-
not create new free structure or type names, so name consistency (as defined
in Section 5.2, page 39) is automatically preserved across separately com-
piled modules. On the other hand, imposing these restrictions may force the
programmer to write many more sharing equations than is needed if functors
and signature expressions can refer to free structures.
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4 Static Semantics for the Core

Our first task in presenting the semantics – whether for Core or Modules,
static or dynamic – is to define the objects concerned. In addition to the
class of syntactic objects, which we have already defined, there are classes
of so-called semantic objects used to describe the meaning of the syntac-
tic objects. Some classes contain simple semantic objects; such objects are
usually identifiers or names of some kind. Other classes contain compound
semantic objects, such as types or environments, which are constructed from
component objects.

4.1 Simple Objects

All semantic objects in the static semantics of the entire language are built
from identifiers and two further kinds of simple objects: type constructor
names and structure names. Type constructor names are the values taken
by type constructors; we shall usually refer to them briefly as type names, but
they are to be clearly distinguished from type variables and type constructors.
Structure names play an active role only in the Modules semantics; they
enter the Core semantics only because they appear in structure environments,
which (in turn) are needed in the Core semantics only to determine the values
of long identifiers. The simple object classes, and the variables ranging over
them, are shown in Figure 9. We have included TyVar in the table to make
visible the use of α in the semantics to range over TyVar.

α or tyvar ∈ TyVar type variables
t ∈ TyName type names
m ∈ StrName structure names

Figure 9: Simple Semantic Objects

Each α ∈ TyVar possesses a boolean equality attribute, which determines
whether or not it admits equality, i.e. whether it is a member of EtyVar
(defined on page 5). Independently hereof, each α possesses a boolean at-
tribute, the imperative attribute, which determines whether it is imperative,
i.e. whether it is a member of ImpTyVar (defined on page 5) or not.

Each t ∈ TyName has an arity k ≥ 0, and also possesses an equality
attribute. We denote the class of type names with arity k by TyName(k).
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With each special constant scon we associate a type name type(scon)
which is either int, real or string as indicated by Section 2.2.

4.2 Compound Objects

When A and B are sets FinA denotes the set of finite subsets of A, and

A
fin→ B denotes the set of finite maps (partial functions with finite domain)

from A to B. The domain and range of a finite map, f , are denoted Dom f
and Ran f . A finite map will often be written explicitly in the form {a1 7→
b1, ···, ak 7→ bk}, k ≥ 0; in particular the empty map is {}. We shall use the
form {x 7→ e ; φ} – a form of set comprehension – to stand for the finite
map f whose domain is the set of values x which satisfy the condition φ, and
whose value on this domain is given by f(x) = e.

When f and g are finite maps the map f + g, called f modified by g, is
the finite map with domain Dom f ∪Dom g and values

(f + g)(a) = if a ∈ Dom g then g(a) else f(a).

The compound objects for the static semantics of the Core Language are
shown in Figure 10. We take ∪ to mean disjoint union over semantic object
classes. We also understand all the defined object classes to be disjoint.

Note that Λ and ∀ bind type variables. For any semantic object A,
tynamesA and tyvarsA denote respectively the set of type names and the set
of type variables occurring free in A. Moreover, imptyvarsA and apptyvarsA
denote respectively the set of imperative type variables and the set of ap-
plicative type variables occurring free in A.

4.3 Projection, Injection and Modification

Projection: We often need to select components of tuples – for example,
the variable-environment component of a context. In such cases we rely
on variable names to indicate which component is selected. For instance
“VE of E” means “the variable-environment component of E” and “m of S”
means “the structure name of S”.

Moreover, when a tuple contains a finite map we shall “apply” the tuple
to an argument, relying on the syntactic class of the argument to determine
the relevant function. For instance C(tycon) means (TE of C)tycon.

A particular case needs mention: C(con) is taken to stand for (VE of
C)con; similarly, C(excon) is taken to stand for (VE of C)excon. The type
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τ ∈ Type = TyVar ∪ RecType ∪ FunType ∪ ConsType
(τ1, ···, τk) or τ (k) ∈ Typek

(α1, ···, αk) or α(k) ∈ TyVark

% ∈ RecType = Lab
fin→ Type

τ → τ ′ ∈ FunType = Type× Type

ConsType = ∪k≥0ConsType(k)

τ (k)t ∈ ConsType(k) = Typek × TyName(k)

θ or Λα(k).τ ∈ TypeFcn = ∪k≥0TyVark × Type
σ or ∀α(k).τ ∈ TypeScheme = ∪k≥0TyVark × Type
S or (m,E) ∈ Str = StrName× Env

(θ, CE) ∈ TyStr = TypeFcn× ConEnv

SE ∈ StrEnv = StrId
fin→ Str

TE ∈ TyEnv = TyCon
fin→ TyStr

CE ∈ ConEnv = Con
fin→ TypeScheme

VE ∈ VarEnv = (Var ∪ Con ∪ ExCon)
fin→ TypeScheme

EE ∈ ExConEnv = ExCon
fin→ Type

E or (SE, TE, VE,EE) ∈ Env = StrEnv × TyEnv × VarEnv × ExConEnv
T ∈ TyNameSet = Fin(TyName)
U ∈ TyVarSet = Fin(TyVar)

C or T, U,E ∈ Context = TyNameSet× TyVarSet× Env

Figure 10: Compound Semantic Objects

scheme of a value constructor is held in VE as well as in TE (where it will
be recorded within a CE); similarly, the type of an exception constructor is
held in VE as well as in EE. Thus the re-binding of a constructor of either
kind is given proper effect by accessing it in VE, rather than in TE or in EE.

Finally, environments may be applied to long identifiers. For instance if
longcon = strid1.···.stridk.con then E(longcon) means

(VE of (SE of ···(SE of (SE of E)strid1)strid2···)stridk)con.

Injection: Components may be injected into tuple classes; for example,
“VE in Env” means the environment ({}, {}, VE, {}).

Modification: The modification of one map f by another map g, written
f + g, has already been mentioned. It is commonly used for environment
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modification, for example E + E ′. Often, empty components will be left
implicit in a modification; for example E + VE means E + ({}, {}, VE, {}).
For set components, modification means union, so that C + (T, VE) means

( (T of C) ∪ T, U of C, (E of C) + VE )

Finally, we frequently need to modify a context C by an environment E (or a
type environment TE say), at the same time extending T of C to include the
type names of E (or of TE say). We therefore define C ⊕ TE, for example,
to mean C + (tynamesTE, TE).

4.4 Types and Type functions

A type τ is an equality type, or admits equality, if it is of one of the forms

• α, where α admits equality;

• {lab1 7→ τ1, ···, labn 7→ τn}, where each τi admits equality;

• τ (k)t, where t and all members of τ (k) admit equality;

• (τ ′)ref.

A type function θ = Λα(k).τ has arity k; it must be closed – i.e. tyvars(τ) ⊆
α(k) – and the bound variables must be distinct. Two type functions are
considered equal if they only differ in their choice of bound variables (alpha-
conversion). In particular, the equality attribute has no significance in a
bound variable of a type function; for example, Λα.α → α and Λβ.β → β
are equal type functions even if α admits equality but β does not. Similarly,
the imperative attribute has no significance in the bound variable of a type
function. If t has arity k, then we write t to mean Λα(k).α(k)t (eta-conversion);
thus TyName ⊆ TypeFcn. θ = Λα(k).τ is an equality type function, or admits
equality, if when the type variables α(k) are chosen to admit equality then τ
also admits equality.

We write the application of a type function θ to a vector τ (k) of types as
τ (k)θ. If θ = Λα(k).τ we set τ (k)θ = τ{τ (k)/α(k)} (beta-conversion).

We write τ{θ(k)/t(k)} for the result of substituting type functions θ(k) for
type names t(k) in τ . We assume that all beta-conversions are carried out
after substitution, so that for example

(τ (k)t){Λα(k).τ/t} = τ{τ (k)/α(k)}.

A type is imperative if all type variables occurring in it are imperative.
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4.5 Type Schemes

A type scheme σ = ∀α(k).τ generalises a type τ ′, written σ � τ ′, if τ ′ =
τ{τ (k)/α(k)} for some τ (k), where each member τi of τ (k) admits equality
if αi does, and τi is imperative if αi is imperative. If σ′ = ∀β(l).τ ′ then σ
generalises σ′, written σ � σ′, if σ � τ ′ and β(l) contains no free type variable
of σ. It can be shown that σ � σ′ iff, for all τ ′′, whenever σ′ � τ ′′ then also
σ � τ ′′.

Two type schemes σ and σ′ are considered equal if they can be obtained
from each other by renaming and reordering of bound type variables, and
deleting type variables from the prefix which do not occur in the body. Here,
in contrast to the case for type functions, the equality attribute must be
preserved in renaming; for example ∀α.α → α and ∀β.β → β are only
equal if either both α and β admit equality, or neither does. Similarly, the
imperative attribute of a bound type variable of a type scheme is significant.
It can be shown that σ = σ′ iff σ � σ′ and σ′ � σ.

We consider a type τ to be a type scheme, identifying it with ∀().τ .

4.6 Scope of Explicit Type Variables

In the Core language, a type or datatype binding can explicitly introduce
type variables whose scope is that binding. In the modules, a description of
a value, type, or datatype may contain explicit type variables whose scope is
that description. However, we still have to account for the scope of an explicit
type variable occurring in the “: ty” of a typed expression or pattern or in
the “of ty” of an exception binding. For the rest of this section, we consider
such occurrences of type variables only.

Every occurrence of a value declaration is said to scope a set of explicit
type variables determined as follows.

First, an occurrence of α in a value declaration val valbind is said to be
unguarded if the occurrence is not part of a smaller value declaration within
valbind . In this case we say that α occurs unguarded in the value declaration.

Then we say that α is scoped at a particular occurrence O of val valbind
in a program if (1) α occurs unguarded in this value declaration, and (2)
α does not occur unguarded in any larger value declaration containing the
occurrence O.

Hence, associated with every occurrence of a value declaration there is a
set U of the explicit type variables that are scoped at that occurrence. One



4 STATIC SEMANTICS FOR THE CORE 26

may think of each occurrence of val as being implicitly decorated with such
a set, for instance:

val{} x = (let val{’a} Id1:’a->’a = fn z=>z in Id1 Id1 end,

let val{’a} Id2:’a->’a = fn z=>z in Id2 Id2 end)

val{’a} x = (let val{} Id:’a->’a = fn z=>z in Id Id end,

fn z=> z:’a)

According to the inference rules in Section 4.10 the first example can
be elaborated, but the second cannot since ’a is bound at the outer value
declaration leaving no possibility of two different instantiations of the type
of Id in the application Id Id.

4.7 Non-expansive Expressions

In order to treat polymorphic references and exceptions, the set Exp of ex-
pressions is partitioned into two classes, the expansive and the non-expansive
expressions. Any variable, constructor and fn expression, possibly con-
strained by one or more type expressions, is non-expansive; all other ex-
pressions are said to be expansive. The idea is that the dynamic evaluation
of a non-expansive expression will neither generate an exception nor extend
the domain of the memory, while the evaluation of an expansive expression
might.

4.8 Closure

Let τ be a type and A a semantic object. Then ClosA(τ), the closure of τ with
respect to A, is the type scheme ∀α(k).τ , where α(k) = tyvars(τ) \ tyvarsA.
Commonly, A will be a context C. We abbreviate the total closure Clos{}(τ)
to Clos(τ). If the range of a variable environment VE contains only types
(rather than arbitrary type schemes) we set

ClosAVE = {id 7→ ClosA(τ) ; VE(id) = τ}

with a similar definition for ClosACE.
Closing a variable environment VE that stems from the elaboration of a

value binding valbind requires extra care to ensure type security of references
and exceptions and correct scoping of explicit type variables. Recall that
valbind is not allowed to bind the same variable twice. Thus, for each var ∈
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DomVE there is a unique pat = exp in valbind which binds var . If VE(var) =
τ , let ClosC,valbindVE(var) = ∀α(k).τ , where

α(k) =
{

tyvars τ \ tyvarsC, if exp is non-expansive;
apptyvars τ \ tyvarsC, if exp is expansive.

Notice that the form of valbind does not affect the binding of applicative
type variables, only the binding of imperative type variables.

4.9 Type Structures and Type Environments

A type structure (θ, CE) is well-formed if either CE = {}, or θ is a type name
t. (The latter case arises, with CE 6= {}, in datatype declarations.) All type
structures occurring in elaborations are assumed to be well-formed.

A type structure (t, CE) is said to respect equality if, whenever t admits
equality, then either t = ref (see Appendix C) or, for each CE(con) of the
form ∀α(k).(τ → α(k)t), the type function Λα(k).τ also admits equality. (This
ensures that the equality predicate = will be applicable to a constructed
value (con, v) of type τ (k)t only when it is applicable to the value v itself,
whose type is τ{τ (k)/α(k)}.) A type environment TE respects equality if all
its type structures do so.

Let TE be a type environment, and let T be the set of type names t such
that (t, CE) occurs in TE for some CE 6= {}. Then TE is said to maximise
equality if (a) TE respects equality, and also (b) if any larger subset of T
were to admit equality (without any change in the equality attribute of any
type names not in T ) then TE would cease to respect equality.

For any TE of the form

TE = {tycon i 7→ (ti, CEi) ; 1 ≤ i ≤ k},

where no CEi is the empty map, and for any E we define Abs(TE,E) to be
the environment obtained from E and TE as follows. First, let Abs(TE) be
the type environment {tycon i 7→ (ti, {}) ; 1 ≤ i ≤ k} in which all constructor
environments CEi have been replaced by the empty map. Let t′1, ···, t′k be
new distinct type names none of which admit equality. Then Abs(TE,E)
is the result of simultaneously substituting t′i for ti, 1 ≤ i ≤ k, throughout
Abs(TE) +E. (The effect of the latter substitution is to ensure that the use
of equality on an abstype is restricted to the with part.)
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4.10 Inference Rules

Each rule of the semantics allows inferences among sentences of the form

A ` phrase ⇒ A′

where A is usually an environment or a context, phrase is a phrase of the
Core, and A′ is a semantic object – usually a type or an environment. It
may be pronounced “phrase elaborates to A′ in (context or environment)
A”. Some rules have extra hypotheses not of this form; they are called side
conditions.

In the presentation of the rules, phrases within single angle brackets
〈 〉 are called first options, and those within double angle brackets 〈〈 〉〉 are
called second options. To reduce the number of rules, we have adopted the
following convention:

In each instance of a rule, the first options must be either all
present or all absent; similarly the second options must be either
all present or all absent.

Although not assumed in our definitions, it is intended that every context
C = T, U,E has the property that tynamesE ⊆ T . Thus T may be thought
of, loosely, as containing all type names which “have been generated”. It is
necessary to include T as a separate component in a context, since tynamesE
may not contain all the type names which have been generated; one reason is
that a context T, ∅, E is a projection of the basis B = (M,T ), F,G,E whose
other components F and G could contain other such names – recorded in T
but not present in E. Of course, remarks about what “has been generated”
are not precise in terms of the semantic rules. But the following precise result
may easily be demonstrated:

Let S be a sentence T, U,E ` phrase ⇒ A such that tynamesE ⊆
T , and let S′ be a sentence T ′, U ′, E ′ ` phrase ′ ⇒ A′ occurring
in a proof of S; then also tynamesE ′ ⊆ T ′.

Atomic Expressions C ` atexp ⇒ τ

C ` scon ⇒ type(scon)
(1)

C(longvar) � τ

C ` longvar ⇒ τ
(2)
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C(longcon) � τ

C ` longcon ⇒ τ
(3)

C(longexcon) = τ

C ` longexcon ⇒ τ
(4)

〈C ` exprow ⇒ %〉
C ` { 〈exprow〉 }⇒ {}〈+ %〉 in Type

(5)

C ` dec ⇒ E C ⊕ E ` exp ⇒ τ

C ` let dec in exp end⇒ τ
(6)

C ` exp ⇒ τ

C ` ( exp )⇒ τ
(7)

Comments:

(2),(3) The instantiation of type schemes allows different occurrences of a
single longvar or longcon to assume different types.

(6) The use of ⊕, here and elsewhere, ensures that type names generated
by the first sub-phrase are different from type names generated by the
second sub-phrase.

Expression Rows C ` exprow ⇒ %

C ` exp ⇒ τ 〈C ` exprow ⇒ %〉
C ` lab = exp 〈 , exprow〉 ⇒ {lab 7→ τ}〈+ %〉

(8)

Expressions C ` exp ⇒ τ

C ` atexp ⇒ τ

C ` atexp ⇒ τ
(9)

C ` exp ⇒ τ ′ → τ C ` atexp ⇒ τ ′

C ` exp atexp⇒ τ
(10)

C ` exp ⇒ τ C ` ty ⇒ τ

C ` exp : ty⇒ τ
(11)
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C ` exp ⇒ τ C ` match ⇒ exn→ τ

C ` exp handle match⇒ τ
(12)

C ` exp ⇒ exn

C ` raise exp⇒ τ
(13)

C ` match ⇒ τ

C ` fn match⇒ τ
(14)

Comments:

(9) The relational symbol ` is overloaded for all syntactic classes (here
atomic expressions and expressions).

(11) Here τ is determined by C and ty . Notice that type variables in ty
cannot be instantiated in obtaining τ ; thus the expression 1:’a will not
elaborate successfully, nor will the expression (fn x=>x):’a->’b. The
effect of type variables in an explicitly typed expression is to indicate
exactly the degree of polymorphism present in the expression.

(13) Note that τ does not occur in the premise; thus a raise expression has
“arbitrary” type.

Matches C ` match ⇒ τ

C ` mrule ⇒ τ 〈C ` match ⇒ τ〉
C ` mrule 〈 | match〉 ⇒ τ

(15)

Match Rules C ` mrule ⇒ τ

C ` pat ⇒ (VE, τ) C + VE ` exp ⇒ τ ′

C ` pat => exp ⇒ τ → τ ′
(16)

Comment: This rule allows new free type variables to enter the context.
These new type variables will be chosen, in effect, during the elaboration of
pat (i.e., in the inference of the first hypothesis). In particular, their choice
may have to be made to agree with type variables present in any explicit
type expression occurring within exp (see rule 11).
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Declarations C ` dec ⇒ E

C + U ` valbind ⇒ VE VE ′ = ClosC,valbindVE U ∩ tyvarsVE ′ = ∅
C ` valU valbind⇒ VE ′ in Env

(17)

C ` typbind ⇒ TE

C ` type typbind⇒ TE in Env
(18)

C ⊕ TE ` datbind ⇒ VE, TE ∀(t, CE) ∈ RanTE, t /∈ (T of C)
TE maximises equality

C ` datatype datbind⇒ (VE, TE) in Env
(19)

C ⊕ TE ` datbind ⇒ VE, TE ∀(t, CE) ∈ RanTE, t /∈ (T of C)
C ⊕ (VE, TE) ` dec ⇒ E TE maximises equality

C ` abstype datbind with dec end⇒ Abs(TE,E)
(20)

C ` exbind ⇒ EE VE = EE

C ` exception exbind⇒ (VE,EE) in Env
(21)

C ` dec1 ⇒ E1 C ⊕ E1 ` dec2 ⇒ E2

C ` local dec1 in dec2 end⇒ E2

(22)

C(longstrid1) = (m1, E1) ··· C(longstridn) = (mn, En)

C ` open longstrid1 ··· longstridn ⇒ E1 + ···+ En

(23)

C ` ⇒ {} in Env
(24)

C ` dec1 ⇒ E1 C ⊕ E1 ` dec2 ⇒ E2

C ` dec1 〈;〉 dec2 ⇒ E1 + E2

(25)

Comments:

(17) Here VE will contain types rather than general type schemes. The clo-
sure of VE is exactly what allows variables to be used polymorphically,
via rule 2.

Moreover, U is the set of explicit type variables scoped at this particular
occurrence of val valbind, cf. Section 4.6, page 25. The side-condition
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on U ensures that these explicit type variables are bound by the closure
operation. On the other hand, no other explicit type variable occurring
free in VE will become bound, since it must be in U of C, and is there-
fore excluded from closure by the definition of the closure operation
(Section 4.8, page 26) since U of C ⊆ tyvarsC.

(19),(20) The side conditions express that the elaboration of each datatype
binding generates new type names and that as many of these new names
as possible admit equality. Adding TE to the context on the left of the
` captures the recursive nature of the binding.

(20) The Abs operation was defined in Section 4.9, page 27.

(21) No closure operation is used here, since EE maps exception names
to types rather than to general type schemes. Note that EE is also
recorded in the VarEnv component of the resulting environment (see
Section 4.3, page 22).

Value Bindings C ` valbind ⇒ VE

C ` pat ⇒ (VE, τ) C ` exp ⇒ τ 〈C ` valbind ⇒ VE ′〉
C ` pat = exp 〈and valbind〉 ⇒ VE 〈+ VE ′〉

(26)

C + VE ` valbind ⇒ VE

C ` rec valbind⇒ VE
(27)

Comments:

(26) When the option is present we have DomVE ∩ DomVE ′ = ∅ by the
syntactic restrictions.

(27) Modifying C by VE on the left captures the recursive nature of the
binding. From rule 26 we see that any type scheme occurring in VE
will have to be a type. Thus each use of a recursive function in its own
body must be ascribed the same type.

Type Bindings C ` typbind ⇒ TE

tyvarseq = α(k) C ` ty ⇒ τ 〈C ` typbind ⇒ TE〉
C ` tyvarseq tycon = ty 〈and typbind〉 ⇒

{tycon 7→ (Λα(k).τ, {})} 〈+ TE〉

(28)
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Comment: The syntactic restrictions ensure that the type function Λα(k).τ
satisfies the well-formedness constraints of Section 4.4 and they ensure tycon /∈
DomTE.

Data Type Bindings C ` datbind ⇒ VE, TE

tyvarseq = α(k) C, α(k)t ` conbind ⇒ CE
〈C ` datbind ⇒ VE, TE ∀(t′, CE) ∈ RanTE, t 6= t′〉

C ` tyvarseq tycon = conbind 〈and datbind〉 ⇒
ClosCE〈+ VE〉, {tycon 7→ (t,ClosCE)} 〈+ TE〉

(29)

Comment: The syntactic restrictions ensure DomVE ∩ DomCE = ∅ and
tycon /∈ DomTE.

Constructor Bindings C, τ ` conbind ⇒ CE

〈C ` ty ⇒ τ ′〉 〈〈C, τ ` conbind ⇒ CE〉〉
C, τ ` con 〈of ty〉 〈〈 | conbind〉〉 ⇒
{con 7→ τ} 〈+ {con 7→ τ ′ → τ} 〉 〈〈+ CE〉〉

(30)

Comment: By the syntactic restrictions con /∈ DomCE.

Exception Bindings C ` exbind ⇒ EE

〈C ` ty ⇒ τ τ is imperative〉 〈〈C ` exbind ⇒ EE〉〉
C ` excon 〈of ty〉 〈〈and exbind〉〉 ⇒
{excon 7→ exn} 〈+ {excon 7→ τ → exn} 〉 〈〈+ EE〉〉

(31)

C(longexcon) = τ 〈C ` exbind ⇒ EE〉
C ` excon = longexcon 〈and exbind〉 ⇒ {excon 7→ τ} 〈+ EE〉

(32)

Comments:

(31) Notice that τ must not contain any applicative type variables.

(31),(32) There is a unique EE, for each C and exbind , such that C `
exbind ⇒ EE.
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Atomic Patterns C ` atpat ⇒ (VE, τ)

C ` ⇒ ({}, τ)
(33)

C ` scon ⇒ ({}, type(scon))
(34)

C ` var ⇒ ({var 7→ τ}, τ)
(35)

C(longcon) � τ (k)t

C ` longcon ⇒ ({}, τ (k)t)
(36)

C(longexcon) = exn

C ` longexcon ⇒ ({}, exn)
(37)

〈C ` patrow ⇒ (VE, %)〉
C ` { 〈patrow〉 }⇒ ( {}〈+ VE〉, {}〈+ %〉 in Type )

(38)

C ` pat ⇒ (VE, τ)

C ` ( pat )⇒ (VE, τ)
(39)

Comments:

(35) Note that var can assume a type, not a general type scheme.

Pattern Rows C ` patrow ⇒ (VE, %)

C ` ...⇒ ({}, %)
(40)

C ` pat ⇒ (VE, τ) 〈C ` patrow ⇒ (VE ′, %) lab /∈ Dom %〉
C ` lab = pat 〈 , patrow〉 ⇒ (VE〈+ VE ′〉, {lab 7→ τ}〈+ %〉)

(41)

Comment:

(41) By the syntactic restrictions, DomVE ∩DomVE ′ = ∅.
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Patterns C ` pat ⇒ (VE, τ)

C ` atpat ⇒ (VE, τ)

C ` atpat ⇒ (VE, τ)
(42)

C(longcon) � τ ′ → τ C ` atpat ⇒ (VE, τ ′)

C ` longcon atpat⇒ (VE, τ)
(43)

C(longexcon) = τ → exn C ` atpat ⇒ (VE, τ)

C ` longexcon atpat⇒ (VE, exn)
(44)

C ` pat ⇒ (VE, τ) C ` ty ⇒ τ

C ` pat : ty⇒ (VE, τ)
(45)

C ` var ⇒ (VE, τ) 〈C ` ty ⇒ τ〉
C ` pat ⇒ (VE ′, τ)

C ` var〈: ty〉 as pat⇒ (VE + VE ′, τ)
(46)

Comments:

(46) By the syntactic restrictions, DomVE ∩DomVE ′ = ∅.

Type Expressions C ` ty ⇒ τ

tyvar = α

C ` tyvar ⇒ α
(47)

〈C ` tyrow ⇒ %〉
C ` { 〈tyrow〉 }⇒ {}〈+ %〉 in Type

(48)

tyseq = ty1···tyk C ` ty i ⇒ τi (1 ≤ i ≤ k)
C(longtycon) = (θ, CE)

C ` tyseq longtycon⇒ τ (k)θ
(49)

C ` ty ⇒ τ C ` ty ′ ⇒ τ ′

C ` ty -> ty′ ⇒ τ → τ ′
(50)

C ` ty ⇒ τ

C ` ( ty )⇒ τ
(51)

Comments:

(49) Recall that for τ (k)θ to be defined, θ must have arity k.
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Type-expression Rows C ` tyrow ⇒ %

C ` ty ⇒ τ 〈C ` tyrow ⇒ %〉
C ` lab : ty 〈 , tyrow〉 ⇒ {lab 7→ τ}〈+ %〉

(52)

Comment: The syntactic constraints ensure lab /∈ Dom %.

4.11 Further Restrictions

There are a few restrictions on programs which should be enforced by a
compiler, but are better expressed apart from the preceding Inference Rules.
They are:

1. For each occurrence of a record pattern containing a record wildcard,
i.e. of the form {lab1=pat1,···,labm=patm,...} the program context
must determine uniquely the domain {lab1, ···, labn} of its record type,
wherem ≤ n; thus, the context must determine the labels {labm+1, ···, labn}
of the fields to be matched by the wildcard. For this purpose, an ex-
plicit type constraint may be needed. This restriction is necessary to
ensure the existence of principal type schemes.

2. In a match of the form pat1 => exp1 | ··· | patn => expn the pattern
sequence pat1, . . . , patn should be irredundant; that is, each pat j must
match some value (of the right type) which is not matched by pat i for
any i < j. In the context fn match, the match must also be exhaus-
tive; that is, every value (of the right type) must be matched by some
pat i. The compiler must give warning on violation of these restrictions,
but should still compile the match. The restrictions are inherited by
derived forms; in particular, this means that in the function binding
var atpat1 ··· atpatn〈: ty〉 = exp (consisting of one clause only), each
separate atpat i should be exhaustive by itself.

4.12 Principal Environments

The notion of enrichment, E � E ′, between environments E = (SE, TE, VE,EE)
and E ′ = (SE ′, TE ′, VE ′, EE ′) is defined in Section 5.11. For the present sec-
tion, E � E ′ may be taken to mean SE = SE ′ = {}, TE = TE ′, EE = EE ′,
DomVE = DomVE ′ and, for each id ∈ DomVE, VE(id) � VE ′(id).

Let C be a context, and suppose that C ` dec ⇒ E according to the
preceding Inference Rules. Then E is principal (for dec in the context C)
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if, for all E ′ for which C ` dec ⇒ E ′, we have E � E ′. We claim that
if dec elaborates to any environment in C then it elaborates to a principal
environment in C. Strictly, we must allow for the possibility that type names
and imperative type variables which do not occur in C are chosen differently
for E and E ′. The stated claim is therefore made up to such variation.
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5 Static Semantics for Modules

5.1 Semantic Objects

The simple objects for Modules static semantics are exactly as for the Core.
The compound objects are those for the Core, augmented by those in Fig-
ure 11.

M ∈ StrNameSet = Fin(StrName)
N or (M,T ) ∈ NameSet = StrNameSet× TyNameSet

Σ or (N)S ∈ Sig = NameSet× Str
Φ or (N)(S, (N ′)S ′) ∈ FunSig = NameSet× (Str× Sig)

G ∈ SigEnv = SigId
fin→ Sig

F ∈ FunEnv = FunId
fin→ FunSig

B or N,F,G,E ∈ Basis = NameSet× FunEnv × SigEnv × Env

Figure 11: Further Compound Semantic Objects

The prefix (N), in signatures and functor signatures, binds both type
names and structure names. We shall always consider a set N of names as
partitioned into a pair (M,T ) of sets of the two kinds of name.

It is sometimes convenient to work with an arbitrary semantic object A,
or assembly A of such objects. As with the function tynames, strnames(A)
and names(A) denote respectively the set of structure names and the set of
names occurring free in A.

Certain operations require a change of bound names in semantic objects;
see for example Section 5.7. When bound type names are changed, we de-
mand that all of their attributes (i.e. imperative, equality and arity) are
preserved.

For any structure S = (m, (SE, TE, VE,EE)) we call m the structure
name or name of S; also, the proper substructures of S are the members
of RanSE and their proper substructures. The substructures of S are S
itself and its proper substructures. The structures occurring in an object or
assembly A are the structures and substructures from which it is built.

The operations of projection, injection and modification are as for the
Core. Moreover, we define C of B to be the context (T of B, ∅, E of B),
i.e. with an empty set of explicit type variables. Also, we frequently need to
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modify a basis B by an environment E (or a structure environment SE say),
at the same time extending N of B to include the type names and structure
names of E (or of SE say). We therefore define B ⊕ SE, for example, to
mean B + (namesSE, SE).

5.2 Consistency

A set of type structures is said to be consistent if, for all (θ1, CE1) and
(θ2, CE2) in the set, if θ1 = θ2 then

CE1 = {} or CE2 = {} or DomCE1 = DomCE2

A semantic object A or assembly A of objects is said to be consistent if (after
changing bound names to make all nameset prefixes in A disjoint) for all S1

and S2 occurring in A and for every longstrid and every longtycon

1. If m of S1 = m of S2, and both S1(longstrid) and S2(longstrid) exist,
then

m of S1(longstrid) = m of S2(longstrid)

2. If m of S1 = m of S2, and both S1(longtycon) and S2(longtycon) exist,
then

θ of S1(longtycon) = θ of S2(longtycon)

3. The set of all type structures in A is consistent

As an example, a functor signature (N)(S, (N ′)S ′) is consistent if, assum-
ing first that N ∩N ′ = ∅, the assembly A = {S, S ′} is consistent.

We may loosely say that two structures S1 and S2 are consistent if {S1, S2}
is consistent, but must remember that this is stronger than the assertion that
S1 is consistent and S2 is consistent.

Note that if A is a consistent assembly and A′ ⊂ A then A′ is also a
consistent assembly.

5.3 Well-formedness

A signature (N)S is well-formed if N ⊆ namesS, and also, whenever (m,E)
is a substructure of S and m /∈ N , then N ∩ (namesE) = ∅. A functor
signature (N)(S, (N ′)S ′) is well-formed if (N)S and (N ′)S ′ are well-formed,
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and also, whenever (m′, E ′) is a substructure of S ′ and m′ /∈ N ∪ N ′, then
(N ∪N ′) ∩ (namesE ′) = ∅.

An object or assembly A is well-formed if every type environment, signa-
ture and functor signature occurring in A is well-formed.

5.4 Cycle-freedom

An object or assembly A is cycle-free if it contains no cycle of structure
names; that is, there is no sequence

m0, ···,mk−1,mk = m0 (k > 0)

of structure names such that, for each i (0 ≤ i < k) some structure with
name mi occurring in A has a proper substructure with name mi+1.

5.5 Admissibility

An object or assembly A is admissible if it is consistent, well-formed and
cycle-free. Henceforth it is assumed that all objects mentioned are admissible.
We also require that

1. In every sentence A ` phrase ⇒ A′ inferred by the rules given in
Section 5.14, the assembly {A,A′} is admissible.

2. In the special case of a sentence B ` sigexp ⇒ S, we further require
that the assembly consisting of all semantic objects occurring in the
entire inference of this sentence be admissible. This is important for
the definition of principal signatures in Section 5.13.

In our semantic definition we have not undertaken to indicate how admissi-
bility should be checked in an implementation.

5.6 Type Realisation

A type realisation is a map ϕTy : TyName→ TypeFcn such that t and ϕTy(t)
have the same arity, and if t admits equality then so does ϕTy(t).

The support SuppϕTy of a type realisation ϕTy is the set of type names
t for which ϕTy(t) 6= t.
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5.7 Realisation

A realisation is a function ϕ of names, partitioned into a type realisation
ϕTy : TyName→ TypeFcn and a function ϕStr : StrName→ StrName. The
support Suppϕ of a realisation ϕ is the set of names n for which ϕ(n) 6= n.
The yield Yieldϕ of a realisation ϕ is the set of names which occur in some
ϕ(n) for which n ∈ Suppϕ.

Realisations ϕ are extended to apply to all semantic objects; their effect
is to replace each name n by ϕ(n). In applying ϕ to an object with bound
names, such as a signature (N)S, first bound names must be changed so that,
for each binding prefix (N),

N ∩ (Suppϕ ∪ Yieldϕ) = ∅ .

5.8 Type Explication

A signature (N)S is type-explicit if, whenever t ∈ N and occurs free in
S, then some substructure of S contains a type environment TE such that
TE(tycon) = (t, CE) for some tycon and some CE.

5.9 Signature Instantiation

A structure S2 is an instance of a signature Σ1 = (N1)S1, written Σ1≥S2, if
there exists a realisation ϕ such that ϕ(S1) = S2 and Suppϕ ⊆ N1. (Note
that if Σ1 is type-explicit then there is at most one such ϕ.) A signature
Σ2 = (N2)S2 is an instance of Σ1 = (N1)S1, written Σ1≥Σ2, if Σ1≥S2 and
N2 ∩ (names Σ1) = ∅. It can be shown that Σ1≥Σ2 iff, for all S, whenever
Σ2≥S then Σ1≥S.

5.10 Functor Signature Instantiation

A pair (S, (N ′)S ′) is called a functor instance. Given Φ = (N1)(S1, (N
′
1)S ′1),

a functor instance (S2, (N
′
2)S ′2) is an instance of Φ, written Φ≥(S2, (N

′
2)S ′2),

if there exists a realisation ϕ such that ϕ(S1, (N
′
1)S ′1) = (S2, (N

′
2)S ′2) and

Suppϕ ⊆ N1.
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5.11 Enrichment

In matching a structure to a signature, the structure will be allowed both to
have more components, and to be more polymorphic, than (an instance of)
the signature. Precisely, we define enrichment of structures, environments
and type structures by mutual recursion as follows.

A structure S1 = (m1, E1) enriches another structure S2 = (m2, E2),
written S1 � S2, if

1. m1 = m2

2. E1 � E2

An environment E1 = (SE1, TE1, VE1, EE1) enriches another environment
E2 = (SE2, TE2, VE2, EE2), written E1 � E2, if

1. DomSE1 ⊇ DomSE2, and SE1(strid) � SE2(strid) for all strid ∈
DomSE2

2. DomTE1 ⊇ DomTE2, and TE1(tycon) � TE2(tycon) for all tycon ∈
DomTE2

3. DomVE1 ⊇ DomVE2, and VE1(id) � VE2(id) for all id ∈ DomVE2

4. DomEE1 ⊇ DomEE2, and EE1(excon) = EE2(excon) for all excon ∈
DomEE2

Finally, a type structure (θ1, CE1) enriches another type structure (θ2, CE2),
written (θ1, CE1) � (θ2, CE2), if

1. θ1 = θ2

2. Either CE1 = CE2 or CE2 = {}

5.12 Signature Matching

A structure S matches a signature Σ1 if there exists a structure S− such
that Σ1 ≥ S− ≺ S. Thus matching is a combination of instantiation and
enrichment. There is at most one such S−, given Σ1 and S. Moreover, writing
Σ1 = (N1)S1, if Σ1 ≥ S− then there exists a realisation ϕ with Suppϕ ⊆ N1

and ϕ(S1) = S−. We shall then say that S matches Σ1 via ϕ. (Note that if
Σ1 is type-explicit then ϕ is uniquely determined by Σ1 and S.)
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A signature Σ2 matches a signature Σ1 if for all structures S, if S matches
Σ2 then S matches Σ1. It can be shown that Σ2 = (N2)S2 matches Σ1 =
(N1)S1 if and only if there exists a realisation ϕ with Suppϕ ⊆ N1 and
ϕ(S1) ≺ S2 and N2 ∩ names Σ1 = ∅.

5.13 Principal Signatures

The definitions in this section concern the elaboration of signature expres-
sions; more precisely they concern inferences of sentences of the form B `
sigexp ⇒ S, where S is a structure and B is a basis. Recall, from Sec-
tion 5.5, that the assembly of all semantic objects in such an inference must
be admissible.

For any basis B and any structure S, we say that B covers S if for every
substructure (m,E) of S such that m ∈ N of B:

1. For every structure identifier strid ∈ DomE, B contains a substructure
(m,E ′) with m free and strid ∈ DomE ′

2. For every type constructor tycon ∈ DomE, B contains a substructure
(m,E ′) with m free and tycon ∈ DomE ′

(This condition is not a consequence of consistency of {B, S}; informally,
it states that if S shares a substructure with B, then S mentions no more
components of the substructure than B does.)

We say that a signature (N)S is principal for sigexp in B if, choosing N
so that (N of B) ∩N = ∅,

1. B covers S

2. B ` sigexp ⇒ S

3. Whenever B ` sigexp ⇒ S ′, then (N)S≥S ′

We claim that if sigexp elaborates in B to some structure covered by B, then
it possesses a principal signature in B.

Analogous to the definition given for type environments in Section 4.9,
we say that a semantic object A respects equality if every type environment
occurring in A respects equality.

Now let us assume that sigexp possesses a principal signature Σ0 = (N0)S0

in B. We wish to define, in terms of Σ0, another signature Σ which provides
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more information about the equality attributes of structures which will match
Σ0. To this end, let T0 be the set of type names t ∈ N0 which do not admit
equality, and such that (t, CE) occurs in S0 for some CE 6= {}. Then we say
Σ is equality-principal for sigexp in B if

1. Σ respects equality

2. Σ is obtained from Σ0 just by making as many members of T0 admit
equality as possible, subject to 1. above

It is easy to show that, if any such Σ exists, it is determined uniquely by Σ0;
moreover, Σ exists if Σ0 itself respects equality.
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5.14 Inference Rules

As for the Core, the rules of the Modules static semantics allow sentences of
the form

A ` phrase ⇒ A′

to be inferred, where in this case A is either a basis, a context or an envi-
ronment and A′ is a semantic object. The convention for options is as in the
Core semantics.

Although not assumed in our definitions, it is intended that every ba-
sis B = N,F,G,E in which a topdec is elaborated has the property that
namesF ∪
namesG ∪ namesE ⊆ N . This is not the case for bases in which signature
expressions and specifications are elaborated, but the following Theorem can
be proved:

Let S be an inferred sentence B ` topdec ⇒ B′ in which B
satisfies the above condition. Then B′ also satisfies the condition.

Moreover, if S′ is a sentence of the form B′′ ` phrase ⇒ A occur-
ring in a proof of S, where phrase is either a structure expression
or a structure-level declaration, then B′′ also satisfies the condi-
tion.

Finally, if T, U,E ` phrase ⇒ A occurs in a proof of S, where
phrase is a phrase of the Core, then tynamesE ⊆ T .

Structure Expressions B ` strexp ⇒ S

B ` strdec ⇒ E m /∈ (N of B) ∪ namesE

B ` struct strdec end⇒ (m,E)
(53)

B(longstrid) = S

B ` longstrid ⇒ S
(54)

B ` strexp ⇒ S
B(funid)≥(S ′′, (N ′)S ′) , S � S ′′

(N of B) ∩N ′ = ∅
B ` funid ( strexp ) ⇒ S ′

(55)
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B ` strdec ⇒ E B ⊕ E ` strexp ⇒ S

B ` let strdec in strexp end⇒ S
(56)

Comments:

(53) The side condition ensures that each generative structure expression
receives a new name. If the expression occurs in a functor body the
structure name will be bound by (N ′) in rule 99; this will ensure that
for each application of the functor, by rule 55, a new distinct name will
be chosen for the structure generated.

(55) The side condition (NofB)∩N ′ = ∅ can always be satisfied by renaming
bound names in (N ′)S ′ thus ensuring that the generated structures
receive new names.

LetB(funid) = (N)(Sf , (N
′)S ′f ). Assuming that (N)Sf is type-explicit,

the realisation ϕ for which ϕ(Sf , (N
′)S ′f ) = (S ′′, (N ′)S ′) is uniquely

determined by S, since S � S ′′ can only hold if the type names and
structure names in S and S ′′ agree. Recall that enrichment � allows
more components and more polymorphism, while instantiation ≥ does
not.

Sharing between argument and result specified in the declaration of
the functor funid is represented by the occurrence of the same name in
both Sf and S ′f , and this repeated occurrence is preserved by ϕ, yielding
sharing between the argument structure S and the result structure S ′

of this functor application.

(56) The use of ⊕, here and elsewhere, ensures that structure and type
names generated by the first sub-phrase are distinct from names gen-
erated by the second sub-phrase.

Structure-level Declarations B ` strdec ⇒ E

C of B ` dec ⇒ E E principal for dec in (C of B)

B ` dec ⇒ E
(57)

B ` strbind ⇒ SE

B ` structure strbind ⇒ SE in Env
(58)
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B ` strdec1 ⇒ E1 B ⊕ E1 ` strdec2 ⇒ E2

B ` local strdec1 in strdec2 end⇒ E2

(59)

B ` ⇒ {} in Env
(60)

B ` strdec1 ⇒ E1 B ⊕ E1 ` strdec2 ⇒ E2

B ` strdec1 〈;〉 strdec2 ⇒ E1 + E2

(61)

Comments:

(57) The side condition ensures that all type schemes in E are as general
as possible.

Structure Bindings B ` strbind ⇒ SE

B ` strexp ⇒ S 〈B ` sigexp ⇒ Σ , Σ ≥ S ′ ≺ S〉
〈〈B + namesS ` strbind ⇒ SE〉〉

B ` strid 〈: sigexp〉 = strexp 〈〈and strbind〉〉 ⇒ {strid 7→ S〈′〉} 〈〈+ SE〉〉
(62)

Comment: If present, sigexp has the effect of restricting the view which strid
provides of S while retaining sharing of names. The notation S〈′〉 means S ′,
if the first option is present, and S if not.

Signature Expressions B ` sigexp ⇒ S

B ` spec ⇒ E

B ` sig spec end⇒ (m,E)
(63)

B(sigid)≥S
B ` sigid ⇒ S

(64)

Comments:

(63) In contrast to rule 53, m is not here required to be new. The name m
may be chosen to achieve the sharing required in rule 88, or to achieve
the enrichment side conditions of rule 62 or 99. The choice of m must
result in an admissible object.

(64) The instance S of B(sigid) is not determined by this rule, but – as in
rule 63 – the instance may be chosen to achieve sharing properties or
enrichment conditions.
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B ` sigexp ⇒ Σ

B ` sigexp ⇒ S (N)S equality-principal for sigexp in B
(N)S type-explicit

B ` sigexp ⇒ (N)S
(65)

Comment: A signature expression sigexp which is an immediate con-
stituent of a structure binding, a signature binding, a functor binding or
a functor signature is elaborated to an equality-principal and type-explicit
signature, see rules 62, 69, 95 and 99. By contrast, signature expressions
occurring in structure descriptions are elaborated to structures using the lib-
eral rules 63 and 64, see rule 87, so that names can be chosen to achieve
sharing, when necessary.

Signature Declarations B ` sigdec ⇒ G

B ` sigbind ⇒ G

B ` signature sigbind ⇒ G
(66)

B ` ⇒ {}
(67)

B ` sigdec1 ⇒ G1 B +G1 ` sigdec2 ⇒ G2

B ` sigdec1 〈;〉 sigdec2 ⇒ G1 +G2

(68)

Comments:

(66) The first closure restriction of Section 3.6 can be enforced by replacing
the B in the premise by B0 +G of B.

(68) A signature declaration does not create any new structures or types;
hence the use of + instead of ⊕.

Signature Bindings B ` sigbind ⇒ G

B ` sigexp ⇒ Σ 〈B ` sigbind ⇒ G〉
B ` sigid = sigexp 〈and sigbind〉 ⇒ {sigid 7→ Σ} 〈+ G〉

(69)

Comment: The condition that Σ be equality-principal, implicit in the first
premise, ensures that the signature found is as general as possible given the
sharing constraints present in sigexp.
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Specifications B ` spec ⇒ E

C of B ` valdesc ⇒ VE

B ` val valdesc⇒ ClosVE in Env
(70)

C of B ` typdesc ⇒ TE

B ` type typdesc⇒ TE in Env
(71)

C of B ` typdesc ⇒ TE ∀(θ, CE) ∈ RanTE, θ admits equality

B ` eqtype typdesc⇒ TE in Env
(72)

C of B + TE ` datdesc ⇒ VE, TE

B ` datatype datdesc⇒ (VE, TE) in Env
(73)

C of B ` exdesc ⇒ EE VE = EE

B ` exception exdesc⇒ (VE,EE) in Env
(74)

B ` strdesc ⇒ SE

B ` structure strdesc⇒ SE in Env
(75)

B ` shareq ⇒ {}
B ` sharing shareq⇒ {} in Env

(76)

B ` spec1 ⇒ E1 B + E1 ` spec2 ⇒ E2

B ` local spec1 in spec2 end⇒ E2

(77)

B(longstrid1) = (m1, E1) ··· B(longstridn) = (mn, En)

B ` open longstrid1 ··· longstridn ⇒ E1 + ···+ En

(78)

B(sigid1)≥(m1, E1) ··· B(sigidn)≥(mn, En)

B ` include sigid1 ··· sigidn ⇒ E1 + ···+ En

(79)

B ` ⇒ {} in Env
(80)

B ` spec1 ⇒ E1 B + E1 ` spec2 ⇒ E2

B ` spec1 〈;〉 spec2 ⇒ E1 + E2

(81)

Comments:

(70) VE is determined by B and valdesc.
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(71)–(73) The type functions in TE may be chosen to achieve the sharing
hypothesis of rule 89 or the enrichment conditions of rules 62 and 99.
In particular, the type names in TE in rule 73 need not be new. Also,
in rule 71 the type functions in TE may admit equality.

(74) EE is determined by B and exdesc and contains monotypes only.

(79) The names mi in the instances may be chosen to achieve sharing or
enrichment conditions.

Value Descriptions C ` valdesc ⇒ VE

C ` ty ⇒ τ 〈C ` valdesc ⇒ VE〉
C ` var : ty 〈and valdesc〉 ⇒ {var 7→ τ} 〈+ VE〉

(82)

Type Descriptions C ` typdesc ⇒ TE

tyvarseq = α(k) 〈C ` typdesc ⇒ TE〉 arity θ = k

C ` tyvarseq tycon 〈and typdesc〉 ⇒ {tycon 7→ (θ, {})} 〈+ TE〉
(83)

Comment: Note that any θ of arity k may be chosen but that the constructor
environment in the resulting type structure must be empty. For example,
datatype s=c type t sharing s=t is a legal specification, but the type
structure bound to t does not bind any value constructors.

Datatype Descriptions C ` datdesc ⇒ VE, TE

tyvarseq = α(k) C, α(k)t ` condesc ⇒ CE 〈C ` datdesc ⇒ VE, TE〉
C ` tyvarseq tycon = condesc 〈and datdesc〉 ⇒

ClosCE〈+ VE〉, {tycon 7→ (t,ClosCE)} 〈+ TE〉
(84)

Constructor Descriptions C, τ ` condesc ⇒ CE

〈C ` ty ⇒ τ ′〉 〈〈C, τ ` condesc ⇒ CE〉〉
C, τ ` con 〈of ty〉 〈〈 | condesc〉〉 ⇒
{con 7→ τ} 〈+ {con 7→ τ ′ → τ} 〉 〈〈+ CE〉〉

(85)
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Exception Descriptions C ` exdesc ⇒ EE

〈C ` ty ⇒ τ tyvars(τ) = ∅〉 〈〈C ` exdesc ⇒ EE〉〉
C ` excon 〈of ty〉 〈〈and exdesc〉〉 ⇒
{excon 7→ exn} 〈+ {excon 7→ τ → exn}〉 〈〈+ EE〉〉

(86)

Structure Descriptions B ` strdesc ⇒ SE

B ` sigexp ⇒ S 〈B ` strdesc ⇒ SE〉
B ` strid : sigexp 〈and strdesc〉 ⇒ {strid 7→ S} 〈+ SE〉

(87)

Sharing Equations B ` shareq ⇒ {}

m of B(longstrid1) = ··· = m of B(longstridn)

B ` longstrid1 = ··· = longstridn ⇒ {}
(88)

θ of B(longtycon1) = ··· = θ of B(longtyconn)

B ` type longtycon1 = ··· = longtyconn ⇒ {}
(89)

B ` shareq1 ⇒ {} B ` shareq2 ⇒ {}
B ` shareq1 and shareq2 ⇒ {}

(90)

Comments:

(88) By the definition of consistency the premise is weaker than
B(longstrid1) = ··· = B(longstridn). Two different structures with
the same name may be thought of as representing different views. The
requirement that B is consistent forces different views to be consistent.

(89) By the definition of consistency the premise is weaker than
B(longtycon1) = ··· = B(longtyconn). A type structure with empty
constructor environment may have the same type name as one with
a non-empty constructor environment; the former could arise from a
type description, and the latter from a datatype description. However,
the requirement that B is consistent will prevent two type structures
with constructor environments which have different non-empty domains
from sharing the same type name.
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Functor Specifications B ` funspec ⇒ F

B ` fundesc ⇒ F

B ` functor fundesc⇒ F
(91)

B ` ⇒ {}
(92)

B ` funspec1 ⇒ F1 B + F1 ` funspec2 ⇒ F2

B ` funspec1 〈;〉 funspec2 ⇒ F1 + F2

(93)

Comments:

(91) The second closure restriction of Section 3.6 can be enforced by replac-
ing the B in the premise by B0 +G of B.

Functor Descriptions B ` fundesc ⇒ F

B ` funsigexp ⇒ Φ 〈B ` fundesc ⇒ F 〉
B ` funid funsigexp 〈and fundesc〉 ⇒ {funid 7→ Φ}〈+ F 〉

(94)

Functor Signature Expressions B ` funsigexp ⇒ Φ

B ` sigexp ⇒ (N)S B ⊕ {strid 7→ S} ` sigexp ′ ⇒ (N ′)S ′

B ` ( strid : sigexp ) : sigexp′ ⇒ (N)(S, (N ′)S ′)
(95)

Comment: The signatures (N)S and (N ′)S ′ are equality-principal and type-
explicit, see rule 65.

Functor Declarations B ` fundec ⇒ F

B ` funbind ⇒ F

B ` functor funbind ⇒ F
(96)

B ` ⇒ {}
(97)

B ` fundec1 ⇒ F1 B + F1 ` fundec2 ⇒ F2

B ` fundec1 〈;〉 fundec2 ⇒ F1 + F2

(98)

Comments:
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(96) The third closure restriction of Section 3.6 can be enforced by replacing
the B in the premise by B0 + (G of B) + (F of B).

Functor Bindings B ` funbind ⇒ F

B ` sigexp ⇒ (N)S B ⊕ {strid 7→ S} ` strexp ⇒ S ′

〈B ⊕ {strid 7→ S} ` sigexp ′ ⇒ Σ′, Σ′ ≥ S ′′ ≺ S ′〉
N ′ = namesS ′ \ ((N of B) ∪N)

〈〈B ` funbind ⇒ F 〉〉
B ` funid ( strid : sigexp ) 〈: sigexp ′〉 = strexp 〈〈and funbind〉〉 ⇒

{funid 7→ (N)(S, (N ′)S ′〈′〉)} 〈〈+ F 〉〉

(99)

Comment: The requirement that (N)S be equality-principal, implicit in the
first premise, forces (N)S to be as general as possible given the sharing
constraints in sigexp. The requirement that (N)S be type-explicit ensures
that there is at most one realisation via which an actual argument can match
(N)S. Since ⊕ is used, any structure name m and type name t in S acts like
a constant in the functor body; in particular, it ensures that further names
generated during elaboration of the body are distinct from m and t. The set
N ′ is chosen such that every name free in (N)S or (N)(S, (N ′)S ′) is free in
B.

Top-level Declarations B ` topdec ⇒ B′

B ` strdec ⇒ E imptyvarsE = ∅
B ` strdec ⇒ (namesE,E) in Basis

(100)

B ` sigdec ⇒ G imptyvarsG = ∅
B ` sigdec ⇒ (namesG,G) in Basis

(101)

B ` fundec ⇒ F imptyvarsF = ∅
B ` fundec ⇒ (namesF, F ) in Basis

(102)

Comments:

(100)–(102) The side conditions ensure that no free imperative type vari-
ables enter the basis.
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5.15 Functor Signature Matching

As pointed out in Section 3.4 on the grammar for Modules, there is no phrase
class whose elaboration requires matching one functor signature to another
functor signature. But a precise definition of this matching is needed, since
a functor g may only be separately compiled in the presence of specification
of any functor f to which g refers, and then a real functor f must match
this specification. In the case, then, that f has been specified by a functor
signature

Φ1 = (N1)(S1, (N
′
1)S ′1)

and that later f is declared with functor signature

Φ2 = (N2)(S2, (N
′
2)S ′2)

the following matching rule will be employed:
A functor signature Φ2 = (N2)(S2, (N

′
2)S ′2) matches another functor

signature, Φ1 = (N1)(S1, (N
′
1)S ′1), if there exists a realisation ϕ such that

1. (N1)S1 matches (N2)S2 via ϕ, and

2. ϕ((N ′2)S ′2) matches (N ′1)S ′1.

The first condition ensures that the real functor signature Φ2 for f requires
the argument strexp of any application f(strexp) to have no more sharing,
and no more richness, than was predicted by the specified signature Φ1. The
second condition ensures that the real functor signature Φ2, instantiated to
(ϕS2, ϕ((N ′2)S ′2)), provides in the result of the application f(strexp) no less
sharing, and no less richness, than was predicted by the specified signature
Φ1.
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6 Dynamic Semantics for the Core

6.1 Reduced Syntax

Since types are fully dealt with in the static semantics, the dynamic seman-
tics ignores them. The Core syntax is therefore reduced by the following
transformations, for the purpose of the dynamic semantics:

• All explicit type ascriptions “: ty” are omitted, and qualifications
“of ty” are omitted from exception bindings.

• Any declaration of the form “type typbind” or “datatype datbind” is
replaced by the empty declaration.

• A declaration of the form “abstype datbind with dec end” is replaced
by “dec”.

• The Core phrase classes TypBind, DatBind, ConBind, Ty and TyRow
are omitted.

6.2 Simple Objects

All objects in the dynamic semantics are built from identifier classes together
with the simple object classes shown (with the variables which range over
them) in Figure 12.

a ∈ Addr addresses
en ∈ ExName exception names
b ∈ BasVal basic values

sv ∈ SVal special values
{FAIL} failure

Figure 12: Simple Semantic Objects

Addr and ExName are infinite sets. BasVal is described below. SVal is
the class of values denoted by the special constants SCon. Each integer or
real constant denotes a value according to normal mathematical conventions;
each string constant denotes a sequence of ASCII characters as explained in
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Section 2.2. The value denoted by scon is written val(scon). FAIL is the
result of a failing attempt to match a value and a pattern. Thus FAIL is
neither a value nor an exception, but simply a semantic object used in the
rules to express operationally how matching proceeds.

Exception constructors evaluate to exception names, unlike value con-
structors which simply evaluate to themselves. This is to accommodate the
generative nature of exception bindings; each evaluation of a declaration of
a exception constructor binds it to a new unique name.

6.3 Compound Objects

The compound objects for the dynamic semantics are shown in Figure 13.
Many conventions and notations are adopted as in the static semantics; in
particular projection, injection and modification all retain their meaning. We
generally omit the injection functions taking Con, Con×Val etc into Val. For
records r ∈ Record however, we write this injection explicitly as “in Val”; this
accords with the fact that there is a separate phrase class ExpRow, whose
members evaluate to records.

We take ∪ to mean disjoint union over semantic object classes. We also
understand all the defined object classes to be disjoint. A particular case
deserves mention; ExVal and Pack (exception values and packets) are iso-
morphic classes, but the latter class corresponds to exceptions which have
been raised, and therefore has different semantic significance from the former,
which is just a subclass of values.

Although the same names, e.g. E for an environment, are used as in
the static semantics, the objects denoted are different. This need cause no
confusion since the static and dynamic semantics are presented separately.
An important point is that structure names m have no significance at all in
the dynamic semantics; this explains why the object class Str = StrName×
Env is absent here – for the dynamic semantics the concepts structure and
environment coincide.

6.4 Basic Values

The basic values in BasVal are the values bound to predefined variables.
These values are denoted by the identifiers to which they are bound in the
initial dynamic basis (see Appendix D), and are as follows:
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v ∈ Val = {:=} ∪ SVal ∪ BasVal ∪ Con
∪(Con× Val) ∪ ExVal
∪Record ∪ Addr ∪ Closure

r ∈ Record = Lab
fin→ Val

e ∈ ExVal = ExName ∪ (ExName× Val)
[e] or p ∈ Pack = ExVal

(match, E, VE) ∈ Closure = Match× Env × VarEnv

mem ∈ Mem = Addr
fin→ Val

ens ∈ ExNameSet = Fin(ExName)
(mem, ens) or s ∈ State = Mem× ExNameSet

(SE, VE,EE) or E ∈ Env = StrEnv × VarEnv × ExConEnv

SE ∈ StrEnv = StrId
fin→ Env

VE ∈ VarEnv = Var
fin→ Val

EE ∈ ExConEnv = ExCon
fin→ ExName

Figure 13: Compound Semantic Objects

abs floor real sqrt sin cos arctan exp ln

size chr ord explode implode div mod

~ / * + - = <> < > <= >=

std_in std_out open_in open_out close_in close_out

input output lookahead end_of_stream

The meaning of basic values (almost all of which are functions) is represented
by the function

APPLY : BasVal× Val→ Val ∪ Pack

which is detailed in Appendix D.

6.5 Basic Exceptions

A subset BasExName ⊂ ExName of the exception names are bound to pre-
defined exception constructors. These names are denoted by the identifiers
to which they are bound in the initial dynamic basis (see Appendix D), and
are as follows:
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Abs Ord Chr Div Mod Quot Prod

Neg Sum Diff Floor Sqrt Exp Ln

Io Match Bind Interrupt

The exceptions on the first two lines are raised by corresponding basic func-
tions, where ~ / * + - correspond respectively to Neg Quot Prod Sum Diff.
The details are given in Appendix D. The exception (Io, s), where s is a
string, is raised by certain of the basic input/output functions, as detailed in
Appendix D. The exceptions Match and Bind are raised upon failure of
pattern-matching in evaluating a function fn match or a valbind , as detailed
in the rules to follow. Finally, Interrupt is raised by external intervention.

Recall from Section 4.11 that in the context fn match, the match must
be irredundant and exhaustive and that the compiler should flag the match
if it violates these restrictions. The exception Match can only be raised
for a match which is not exhaustive, and has therefore been flagged by the
compiler.

For each value binding pat = exp the compiler must issue a report (but still
compile) if either pat is not exhaustive or pat contains no variable. This will
(on both counts) detect a mistaken declaration like val nil = exp in which
the user expects to declare a new variable nil (whereas the language dictates
that nil is here a constant pattern, so no variable gets declared). However,
these warnings should not be given when the binding is a component of a
top-level declaration val valbind; e.g. val x::l = exp1 and y = exp2 is not
faulted by the compiler at top level, but may of course generate a Bind

exception.

6.6 Closures

The informal understanding of a closure (match, E, VE) is as follows: when
the closure is applied to a value v, match will be evaluated against v, in the
environment E modified in a special sense by VE. The domain DomVE of
this third component contains those function identifiers to be treated recur-
sively in the evaluation. To achieve this effect, the evaluation of match will
take place not in E + VE but in E + RecVE, where

Rec : VarEnv→ VarEnv

is defined as follows:
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• Dom(RecVE) = DomVE

• If VE(var) /∈ Closure, then (RecVE)(var) = VE(var)

• If VE(var) = (match ′, E ′, VE ′) then (RecVE)(var) = (match ′, E ′, VE)

The effect is that, before application of (match, E, VE) to v, the closure
values in RanVE are “unrolled” once, to prepare for their possible recursive
application during the evaluation of match upon v.

This device is adopted to ensure that all semantic objects are finite (by
controlling the unrolling of recursion). The operator Rec is invoked in just
two places in the semantic rules: in the rule for recursive value bindings of the
form “rec valbind”, and in the rule for evaluating an application expression
“exp atexp” in the case that exp evaluates to a closure.

6.7 Inference Rules

The semantic rules allow sentences of the form

s, A ` phrase ⇒ A′, s′

to be inferred, where A is usually an environment, A′ is some semantic object
and s,s′ are the states before and after the evaluation represented by the
sentence. Some hypotheses in rules are not of this form; they are called side-
conditions. The convention for options is the same as for the Core static
semantics.

In most rules the states s and s′ are omitted from sentences; they are
only included for those rules which are directly concerned with the state –
either referring to its contents or changing it. When omitted, the convention
for restoring them is as follows. If the rule is presented in the form

A1 ` phrase1 ⇒ A′1 A2 ` phrase2 ⇒ A′2 ···
··· An ` phrasen ⇒ A′n

A ` phrase ⇒ A′

then the full form is intended to be

s0, A1 ` phrase1 ⇒ A′1, s1 s1, A2 ` phrase2 ⇒ A′2, s2 ···
··· sn−1, An ` phrasen ⇒ A′n, sn

s0, A ` phrase ⇒ A′, sn
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(Any side-conditions are left unaltered). Thus the left-to-right order of the
hypotheses indicates the order of evaluation. Note that in the case n = 0,
when there are no hypotheses (except possibly side-conditions), we have sn =
s0; this implies that the rule causes no side effect. The convention is called
the state convention, and must be applied to each version of a rule obtained
by inclusion or omission of its options.

A second convention, the exception convention, is adopted to deal with
the propagation of exception packets p. For each rule whose full form (ignor-
ing side-conditions) is

s1, A1 ` phrase1 ⇒ A′1, s
′
1 ··· sn, An ` phrasen ⇒ A′n, s

′
n

s, A ` phrase ⇒ A′, s′

and for each k, 1 ≤ k ≤ n, for which the result A′k is not a packet p, an extra
rule is added of the form

s1, A1 ` phrase1 ⇒ A′1, s
′
1 ··· sk, Ak ` phrasek ⇒ p′, s′

s, A ` phrase ⇒ p′, s′

where p′ does not occur in the original rule.2 This indicates that evaluation
of phrases in the hypothesis terminates with the first whose result is a packet
(other than one already treated in the rule), and this packet is the result of
the phrase in the conclusion.

A third convention is that we allow compound variables (variables built
from the variables in Figure 13 and the symbol “/”) to range over unions
of semantic objects. For instance the compound variable v/p ranges over
Val∪Pack. We also allow x/FAIL to range over X ∪{FAIL} where x ranges
over X; furthermore, we extend environment modification to allow for failure
as follows:

VE + FAIL = FAIL.

Atomic Expressions E ` atexp ⇒ v/p

E ` scon ⇒ val(scon)
(103)

E(longvar) = v

E ` longvar ⇒ v
(104)

2There is one exception to the exception convention; no extra rule is added for rule 119
which deals with handlers, since a handler is the only means by which propagation of an
exception can be arrested.
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longcon = strid1.···.stridk.con

E ` longcon ⇒ con
(105)

E(longexcon) = en

E ` longexcon ⇒ en
(106)

〈E ` exprow ⇒ r〉
E ` { 〈exprow〉 }⇒ {}〈+ r〉 in Val

(107)

E ` dec ⇒ E ′ E + E ′ ` exp ⇒ v

E ` let dec in exp end⇒ v
(108)

E ` exp ⇒ v

E ` ( exp )⇒ v
(109)

Comments:

(105) Value constructors denote themselves.

(106) Exception constructors are looked up in the exception environment
component of E.

Expression Rows E ` exprow ⇒ r/p

E ` exp ⇒ v 〈E ` exprow ⇒ r〉
E ` lab = exp 〈 , exprow〉 ⇒ {lab 7→ v}〈+ r〉

(110)

Comment: We may think of components as being evaluated from left to right,
because of the state and exception conventions.

Expressions E ` exp ⇒ v/p

E ` atexp ⇒ v

E ` atexp ⇒ v
(111)

E ` exp ⇒ con con 6= ref E ` atexp ⇒ v

E ` exp atexp⇒ (con, v)
(112)

E ` exp ⇒ en E ` atexp ⇒ v

E ` exp atexp⇒ (en, v)
(113)



6 DYNAMIC SEMANTICS FOR THE CORE 62

s, E ` exp ⇒ ref , s′ s′, E ` atexp ⇒ v, s′′ a /∈ Dom(mem of s′′)

s, E ` exp atexp⇒ a, s′′ + {a 7→ v}
(114)

s, E ` exp ⇒ := , s′ s′, E ` atexp ⇒ {1 7→ a, 2 7→ v}, s′′

s, E ` exp atexp⇒ {} in Val, s′′ + {a 7→ v}
(115)

E ` exp ⇒ b E ` atexp ⇒ v APPLY(b, v) = v′

E ` exp atexp⇒ v′
(116)

E ` exp ⇒ (match, E ′, VE) E ` atexp ⇒ v
E ′ + RecVE, v ` match ⇒ v′

E ` exp atexp⇒ v′
(117)

E ` exp ⇒ (match, E ′, VE) E ` atexp ⇒ v
E ′ + RecVE, v ` match ⇒ FAIL

E ` exp atexp⇒ [Match]
(118)

E ` exp ⇒ v

E ` exp handle match⇒ v
(119)

E ` exp ⇒ [e] E, e ` match ⇒ v

E ` exp handle match⇒ v
(120)

E ` exp ⇒ [e] E, e ` match ⇒ FAIL

E ` exp handle match⇒ [e]
(121)

E ` exp ⇒ e

E ` raise exp⇒ [e]
(122)

E ` fn match⇒ (match, E, {})
(123)

Comments:

(114) The side condition ensures that a new address is chosen. There are
no rules concerning disposal of inaccessible addresses (“garbage collec-
tion”).
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(112)–(118) Note that none of the rules for function application has a
premise in which the operator evaluates to a constructed value, a record
or an address. This is because we are interested in the evaluation of
well-typed programs only, and in such programs exp will always have
a functional type.

(119) This is the only rule to which the exception convention does not apply.
If the operator evaluates to a packet then rule 120 or rule 121 must be
used.

(121) Packets that are not handled by the match propagate.

(123) The third component of the closure is empty because the match does
not introduce new recursively defined values.

Matches E, v ` match ⇒ v′/p/FAIL

E, v ` mrule ⇒ v′

E, v ` mrule 〈 | match〉 ⇒ v′
(124)

E, v ` mrule ⇒ FAIL

E, v ` mrule ⇒ FAIL
(125)

E, v ` mrule ⇒ FAIL E, v ` match ⇒ v′/FAIL

E ` mrule | match⇒ v′/FAIL
(126)

Comment: A value v occurs on the left of the turnstile, in evaluating a match.
We may think of a match as being evaluated against a value; similarly, we
may think of a pattern as being evaluated against a value. Alternative match
rules are tried from left to right.

Match Rules E, v ` mrule ⇒ v′/p/FAIL

E, v ` pat ⇒ VE E + VE ` exp ⇒ v′

E, v ` pat => exp ⇒ v′
(127)

E, v ` pat ⇒ FAIL

E, v ` pat => exp ⇒ FAIL
(128)
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Declarations E ` dec ⇒ E ′/p

E ` valbind ⇒ VE

E ` val valbind⇒ VE in Env
(129)

E ` exbind ⇒ EE

E ` exception exbind⇒ EE in Env
(130)

E ` dec1 ⇒ E1 E + E1 ` dec2 ⇒ E2

E ` local dec1 in dec2 end⇒ E2

(131)

E(longstrid1) = E1 ··· E(longstridk) = Ek

E ` open longstrid1 ··· longstridn ⇒ E1 + ···+ Ek

(132)

E ` ⇒ {} in Env
(133)

E ` dec1 ⇒ E1 E + E1 ` dec2 ⇒ E2

E ` dec1 〈;〉 dec2 ⇒ E1 + E2

(134)

Value Bindings E ` valbind ⇒ VE/p

E ` exp ⇒ v E, v ` pat ⇒ VE 〈E ` valbind ⇒ VE ′〉
E ` pat = exp 〈and valbind〉 ⇒ VE 〈+ VE ′〉

(135)

E ` exp ⇒ v E, v ` pat ⇒ FAIL

E ` pat = exp 〈and valbind〉 ⇒ [Bind]
(136)

E ` valbind ⇒ VE

E ` rec valbind⇒ RecVE
(137)

Exception Bindings E ` exbind ⇒ EE/p

en /∈ ens of s s′ = s+ {en} 〈s′, E ` exbind ⇒ EE, s′′〉
s, E ` excon 〈and exbind〉 ⇒ {excon 7→ en}〈+ EE〉, s′〈′〉

(138)

E(longexcon) = en 〈E ` exbind ⇒ EE〉
E ` excon = longexcon 〈and exbind〉 ⇒ {excon 7→ en}〈+ EE〉

(139)

Comments:

(138) The two side conditions ensure that a new exception name is generated
and recorded as “used” in subsequent states.
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Atomic Patterns E, v ` atpat ⇒ VE/FAIL

E, v ` ⇒ {}
(140)

v = val(scon)

E, v ` scon ⇒ {}
(141)

v 6= val(scon)

E, v ` scon ⇒ FAIL
(142)

E, v ` var ⇒ {var 7→ v}
(143)

longcon = strid1.···.stridk.con v = con

E, v ` longcon ⇒ {}
(144)

longcon = strid1.···.stridk.con v 6= con

E, v ` longcon ⇒ FAIL
(145)

E(longexcon) = v

E, v ` longexcon ⇒ {}
(146)

E(longexcon) 6= v

E, v ` longexcon ⇒ FAIL
(147)

v = {}〈+r〉 in Val 〈E, r ` patrow ⇒ VE/FAIL〉
E, v ` { 〈patrow〉 }⇒ {}〈+VE/FAIL〉

(148)

E, v ` pat ⇒ VE/FAIL

E, v ` ( pat )⇒ VE/FAIL
(149)

Comments:

(142),(145),(147) Any evaluation resulting in FAIL must do so because
rule 142, rule 145, rule 147, rule 155, or rule 157 has been applied.
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Pattern Rows E, r ` patrow ⇒ VE/FAIL

E, r ` ...⇒ {}
(150)

E, r(lab) ` pat ⇒ FAIL

E, r ` lab = pat 〈 , patrow〉 ⇒ FAIL
(151)

E, r(lab) ` pat ⇒ VE 〈E, r ` patrow ⇒ VE ′/FAIL〉
E, r ` lab = pat 〈 , patrow〉 ⇒ VE〈+ VE ′/FAIL〉

(152)

Comments:

(151),(152) For well-typed programs lab will be in the domain of r.

Patterns E, v ` pat ⇒ VE/FAIL

E, v ` atpat ⇒ VE/FAIL

E, v ` atpat ⇒ VE/FAIL
(153)

longcon = strid1.···.stridk.con 6= ref v = (con, v′)
E, v′ ` atpat ⇒ VE/FAIL

E, v ` longcon atpat⇒ VE/FAIL
(154)

longcon = strid1.···.stridk.con 6= ref v /∈ {con} × Val

E, v ` longcon atpat⇒ FAIL
(155)

E(longexcon) = en v = (en, v′)
E, v′ ` atpat ⇒ VE/FAIL

E, v ` longexcon atpat⇒ VE/FAIL
(156)

E(longexcon) = en v /∈ {en} × Val

E, v ` longexcon atpat⇒ FAIL
(157)

s(a) = v s, E, v ` atpat ⇒ VE/FAIL, s

s, E, a ` ref atpat ⇒ VE/FAIL, s
(158)

E, v ` pat ⇒ VE/FAIL

E, v ` var as pat⇒ {var 7→ v}+ VE/FAIL
(159)

Comments:
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(155),(157) Any evaluation resulting in FAIL must do so because rule 142,
rule 145, rule 147, rule 155, or rule 157 has been applied.
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7 Dynamic Semantics for Modules

7.1 Reduced Syntax

Since signature expressions are mostly dealt with in the static semantics, the
dynamic semantics need only take limited account of them. Unlike types,
it cannot ignore them completely; the reason is that an explicit signature
ascription plays the role of restricting the “view” of a structure - that is, re-
stricting the domains of its component environments. However, the types and
the sharing properties of structures and signatures are irrelevant to dynamic
evaluation; the syntax is therefore reduced by the following transformations
(in addition to those for the Core), for the purpose of the dynamic semantics
of Modules:

• Qualifications “of ty” are omitted from exception descriptions.

• Any specification of the form “type typdesc”, “eqtype typdesc”, “datatype
datdesc” or “sharing shareq” is replaced by the empty specification.

• The Modules phrase classes TypDesc, DatDesc, ConDesc and SharEq
are omitted.

7.2 Compound Objects

The compound objects for the Modules dynamic semantics, extra to those
for the Core dynamic semantics, are shown in Figure 14. An interface I ∈ Int

(strid : I, strexp〈: I ′〉, B) ∈ FunctorClosure
= (StrId× Int)× (StrExp〈×Int〉)× Basis

(IE, vars, excons) or I ∈ Int = IntEnv × Fin(Var)× Fin(ExCon)

IE ∈ IntEnv = StrId
fin→ Int

G ∈ SigEnv = SigId
fin→ Int

F ∈ FunEnv = FunId
fin→ FunctorClosure

(F,G,E) or B ∈ Basis = FunEnv × SigEnv × Env
(G, IE) or IB ∈ IntBasis = SigEnv × IntEnv

Figure 14: Compound Semantic Objects



7 DYNAMIC SEMANTICS FOR MODULES 69

represents a “view” of a structure. Specifications and signature expressions
will evaluate to interfaces; moreover, during the evaluation of a specification
or signature expression, structures (to which a specification or signature ex-
pression may refer via “open”) are represented only by their interfaces. To
extract an interface from a dynamic environment we define the operation

Inter : Env→ Int

as follows:
Inter(SE, VE,EE) = (IE,DomVE,DomEE)

where
IE = {strid 7→ InterE ; SE(strid) = E} .

An interface basis IB = (G, IE) is that part of a basis needed to evaluate
signature expressions and specifications. The function Inter is extended to
create an interface basis from a basis B as follows:

Inter(F,G,E) = (G, IE of (InterE))

A further operation

↓ : Env × Int→ Env

is required, to cut down an environment E to a given interface I, representing
the effect of an explicit signature ascription. It is defined as follows:

(SE, VE,EE) ↓ (IE, vars, excons) = (SE ′, VE ′, EE ′)

where

SE ′ = {strid 7→ E ↓ I ; SE(strid) = E and IE(strid) = I}

and (taking ↓ now to mean restriction of a function domain)

VE ′ = VE ↓ vars, EE ′ = EE ↓ excons.

It is important to note that an interface is also a projection of the static
value Σ of a signature expression; it is obtained by omitting structure names
m and type environments TE, and replacing each variable environment VE
and each exception environment EE by its domain. Thus in an implemen-
tation interfaces would naturally be obtained from the static elaboration;
we choose to give separate rules here for obtaining them in the dynamic se-
mantics since we wish to maintain our separation of the static and dynamic
semantics, for reasons of presentation.
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7.3 Inference Rules

The semantic rules allow sentences of the form

s, A ` phrase ⇒ A′, s′

to be inferred, where A is either a basis or an interface basis or empty, A′ is
some semantic object and s,s′ are the states before and after the evaluation
represented by the sentence. Some hypotheses in rules are not of this form;
they are called side-conditions. The convention for options is the same as for
the Core static semantics.

The state and exception conventions are adopted as in the Core dynamic
semantics. However, it may be shown that the only Modules phrases whose
evaluation may cause a side-effect or generate an exception packet are of the
form strexp, strdec, strbind or topdec.

Structure Expressions B ` strexp ⇒ E/p

B ` strdec ⇒ E

B ` struct strdec end⇒ E
(160)

B(longstrid) = E

B ` longstrid ⇒ E
(161)

B(funid) = (strid : I, strexp ′〈: I ′〉, B′)
B ` strexp ⇒ E B′ + {strid 7→ E ↓ I} ` strexp ′ ⇒ E ′

B ` funid ( strexp ) ⇒ E ′〈↓ I ′〉
(162)

B ` strdec ⇒ E B + E ` strexp ⇒ E ′

B ` let strdec in strexp end⇒ E ′
(163)

Comments:

(162) Before the evaluation of the functor body strexp ′, the actual argument
E is cut down by the formal parameter interface I, so that any opening
of strid resulting from the evaluation of strexp ′ will produce no more
components than anticipated during the static elaboration.
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Structure-level Declarations B ` strdec ⇒ E/p

E of B ` dec ⇒ E ′

B ` dec ⇒ E ′
(164)

B ` strbind ⇒ SE

B ` structure strbind ⇒ SE in Env
(165)

B ` strdec1 ⇒ E1 B + E1 ` strdec2 ⇒ E2

B ` local strdec1 in strdec2 end⇒ E2

(166)

B ` ⇒ {} in Env
(167)

B ` strdec1 ⇒ E1 B + E1 ` strdec2 ⇒ E2

B ` strdec1 〈;〉 strdec2 ⇒ E1 + E2

(168)

Structure Bindings B ` strbind ⇒ SE/p

B ` strexp ⇒ E 〈InterB ` sigexp ⇒ I〉
〈〈B ` strbind ⇒ SE〉〉

B ` strid 〈: sigexp〉 = strexp 〈〈and strbind〉〉 ⇒
{strid 7→ E〈↓ I〉} 〈〈+ SE〉〉

(169)

Comment: As in the static semantics, when present, sigexp constrains the
“view” of the structure. The restriction must be done in the dynamic se-
mantics to ensure that any dynamic opening of the structure produces no
more components than anticipated during the static elaboration.

Signature Expressions IB ` sigexp ⇒ I

IB ` spec ⇒ I

IB ` sig spec end⇒ I
(170)

IB(sigid) = I

IB ` sigid ⇒ I
(171)
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Signature Declarations IB ` sigdec ⇒ G

IB ` sigbind ⇒ G

IB ` signature sigbind ⇒ G
(172)

IB ` ⇒ {}
(173)

IB ` sigdec1 ⇒ G1 IB +G1 ` sigdec2 ⇒ G2

IB ` sigdec1 〈;〉 sigdec2 ⇒ G1 +G2

(174)

Signature Bindings IB ` sigbind ⇒ G

IB ` sigexp ⇒ I 〈IB ` sigbind ⇒ G〉
IB ` sigid = sigexp 〈and sigbind〉 ⇒ {sigid 7→ I} 〈+ G〉

(175)

Specifications IB ` spec ⇒ I

` valdesc ⇒ vars

IB ` val valdesc⇒ vars in Int
(176)

` exdesc ⇒ excons

IB ` exception exdesc⇒ excons in Int
(177)

IB ` strdesc ⇒ IE

IB ` structure strdesc⇒ IE in Int
(178)

IB ` spec1 ⇒ I1 IB + IE of I1 ` spec2 ⇒ I2

IB ` local spec1 in spec2 end⇒ I2

(179)

IB(longstrid1) = I1 ··· IB(longstridn) = In
IB ` open longstrid1 ··· longstridn ⇒ I1 + ···+ In

(180)

IB(sigid1) = I1 ··· IB(sigidn) = In
IB ` include sigid1 ··· sigidn ⇒ I1 + ···+ In

(181)

IB ` ⇒ {} in Int
(182)

IB ` spec1 ⇒ I1 IB + IE of I1 ` spec2 ⇒ I2

IB ` spec1 〈;〉 spec2 ⇒ I1 + I2

(183)

Comments:
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(179),(183) Note that vars of I1 and excons of I1 are not needed for the
evaluation of spec2.

Value Descriptions ` valdesc ⇒ vars

〈` valdesc ⇒ vars〉
` var 〈and valdesc〉 ⇒ {var} 〈∪ vars〉

(184)

Exception Descriptions ` exdesc ⇒ excons

〈` exdesc ⇒ excons〉
` excon 〈exdesc〉 ⇒ {excon} 〈∪ excons〉

(185)

Structure Descriptions IB ` strdesc ⇒ IE

IB ` sigexp ⇒ I 〈IB ` strdesc ⇒ IE〉
IB ` strid : sigexp 〈and strdesc〉 ⇒ {strid 7→ I} 〈+ IE〉

(186)

Functor Bindings B ` funbind ⇒ F

InterB ` sigexp ⇒ I 〈InterB + {strid 7→ I} ` sigexp ′ ⇒ I ′〉
〈〈B ` funbind ⇒ F 〉〉

B ` funid ( strid : sigexp ) 〈: sigexp ′〉 = strexp 〈〈and funbind〉〉 ⇒
{funid 7→ (strid : I, strexp〈: I ′〉, B)} 〈〈+ F 〉〉

(187)

Functor Declarations B ` fundec ⇒ F

B ` funbind ⇒ F

B ` functor funbind ⇒ F
(188)

B ` ⇒ {}
(189)

B ` fundec1 ⇒ F1 B + F1 ` fundec2 ⇒ F2

B ` fundec1 〈;〉 fundec2 ⇒ F1 + F2

(190)
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Top-level Declarations B ` topdec ⇒ B′/p

B ` strdec ⇒ E

B ` strdec ⇒ E in Basis
(191)

InterB ` sigdec ⇒ G

B ` sigdec ⇒ G in Basis
(192)

B ` fundec ⇒ F

B ` fundec ⇒ F in Basis
(193)
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8 Programs

The phrase class Program of programs is defined as follows

program ::= topdec ; 〈program〉

Hitherto, the semantic rules have not exposed the interactive nature of
the language. During an ML session the user can type in a phrase, more
precisely a phrase of the form topdec as defined in Figure 8, page 19. Upon
the following semicolon, the machine will then attempt to parse, elaborate
and evaluate the phrase returning either a result or, if any of the phases fail,
an error message. The outcome is significant for what the user subsequently
types, so we need to answer questions such as: if the elaboration of a top-
level declaration succeeds, but its evaluation fails, then does the result of the
elaboration get recorded in the static basis?

In practice, ML implementations may provide a directive as a form of
top-level declaration for including programs from files rather than directly
from the terminal. In case a file consists of a sequence of top-level declara-
tions (separated by semicolons) and the machine detects an error in one of
these, it is probably sensible to abort the execution of the directive. Rather
than introducing a distinction between, say, batch programs and interactive
programs, we shall tacitly regard all programs as interactive, and leave to
implementers to clarify how the inclusion of files, if provided, affects the
updating of the static and dynamic basis. Moreover, we shall focus on elabo-
ration and evaluation and leave the handling of parse errors to implementers
(since it naturally depends on the kind of parser being employed). Hence, in
this section the execution of a program means the combined elaboration and
evaluation of the program.

So far, for simplicity, we have used the same notationB to stand for both a
static and a dynamic basis, and this has been possible because we have never
needed to discuss static and dynamic semantics at the same time. In giving
the semantics of programs, however, let us rename as StaticBasis the class
Basis defined in the static semantics of modules, Section 5.1, and let us use
BSTAT to range over StaticBasis. Similarly, let us rename as DynamicBasis
the class Basis defined in the dynamic semantics of modules, Section 7.2, and
let us use BDYN to range over DynamicBasis. We now define

B or (BSTAT, BDYN) ∈ Basis = StaticBasis×DynamicBasis.
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Further, we shall use `STAT for elaboration as defined in Section 5, and
`DYN for evaluation as defined in Section 7. Then ` will be reserved for the
execution of programs, which thus is expressed by a sentence of the form

s, B ` program ⇒ B′, s′

This may be read as follows: starting in basis B with state s the execution
of program results in a basis B′ and a state s′.

It must be understood that executing a program never results in an excep-
tion. If the evaluation of a topdec yields an exception (for instance because
of a raise expression or external intervention) then the result of executing
the program “topdec ;” is the original basis together with the state which
is in force when the exception is generated. In particular, the exception
convention of Section 6.7 is not applicable to the ensuing rules.

We represent the non-elaboration of a top-level declaration by
. . . `STAT topdec 6⇒. (This covers also the case in which a user interrupts the
elaboration.)

Programs s, B ` program ⇒ B′, s′

BSTAT of B `STAT topdec 6⇒ 〈s, B ` program ⇒ B′, s′〉
s, B ` topdec ; 〈program〉 ⇒ B〈′〉, s〈′〉

(194)

BSTAT of B `STAT topdec ⇒ B
(1)
STAT

s, BDYN of B `DYN topdec ⇒ p, s′ 〈s′, B ` program ⇒ B′, s′′〉
s, B ` topdec ; 〈program〉 ⇒ B〈′〉, s′〈′〉

(195)

BSTAT of B `STAT topdec ⇒ B
(1)
STAT

s, BDYN of B `DYN topdec ⇒ B
(1)
DYN, s

′ B′ = B ⊕ (B
(1)
STAT, B

(1)
DYN)

〈s′, B′ ` program ⇒ B′′, s′′〉
s, B ` topdec ; 〈program〉 ⇒ B′〈′〉, s′〈′〉

(196)
Comments:

(194) A failing elaboration has no effect whatever.

(195) An evaluation which yields an exception nullifies the change in the
static basis, but does not nullify side-effects on the state which may
have occurred before the exception was raised.
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Core language Programs

A program is called a core language program if it can be parsed in the reduced
grammar defined as follows:

1. Replace the definition of top-level declarations by

topdec ::= strdec

2. Replace the definition of structure-level declarations by

strdec ::= dec

3. Omit the open declaration from the syntax class of declarations dec

4. Restrict the long identifier classes to identifiers, i.e. omit qualified
identifiers.

This means that several components of a basis, for example the signature
and functor environments, are irrelevant to the execution of a core language
program.



A APPENDIX: DERIVED FORMS 78

A Appendix: Derived Forms

Several derived grammatical forms are provided in the Core; they are pre-
sented in Figures 15, 16 and 17. Each derived form is given with its equivalent
form. Thus, each row of the tables should be considered as a rewriting rule

Derived form =⇒ Equivalent form

and these rules may be applied repeatedly to a phrase until it is transformed
into a phrase of the bare language. See Appendix B for the full Core gram-
mar, including all the derived forms.

In the derived forms for tuples, in terms of records, we use n to mean the
ML numeral which stands for the natural number n.

Note that a new phrase class FvalBind of function-value bindings is
introduced, accompanied by a new declaration form fun fvalbind . The mixed
forms val rec fvalbind , val fvalbind and fun valbind are not allowed –
though the first form arises during translation into the bare language.

The following notes refer to Figure 17:

• There is a version of the derived form for function-value binding which
allows the function identifier to be infixed; see Figure 20 in Appendix B.

• In the two forms involving withtype , the identifiers bound by dat-
bind and by typbind must be distinct. Then the transformed binding
datbind′ in the equivalent form is obtained from datbind by expanding
out all the definitions made by typbind. More precisely, if typbind is

tyvarseq1 tycon1 =ty1 and ··· and tyvarseqn tyconn =tyn

then datbind′ is the result of simultaneous replacement (in datbind ) of
every type expression tyseq i tycon i (1 ≤ i ≤ n) by the corresponding
defining expression

ty i{tyseq i/tyvarseq i}

Figure 18 shows derived forms for functors. They allow functors to take,
say, a single type or value as a parameter, in cases where it would seem
clumsy to “wrap up” the argument as a structure expression. These forms
are currently more experimental than the bare syntax of modules, but we rec-
ommend implementers to include them so that they can be tested in practice.
In the derived forms for functor bindings and functor signature expressions,
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Derived Form Equivalent Form

Expressions exp
() { }

(exp1 , ··· , expn) {1=exp1, ···, n=expn} (n ≥ 2)
# lab fn {lab=var,...} => var (var new)
case exp of match (fn match)(exp)
if exp1 then exp2 else exp3 case exp1 of true => exp2

| false => exp3

exp1 orelse exp2 if exp1 then true else exp2

exp1 andalso exp2 if exp1 then exp2 else false

(exp1 ; ··· ; expn ; exp) case exp1 of ( ) => (n ≥ 1)
···

case expn of ( ) => exp
let dec in let dec in (n ≥ 2)

exp1 ; ··· ; expn end (exp1 ; ··· ; expn) end

while exp1 do exp2 let val rec var = fn () => (var new)
if exp1 then (exp2;var()) else ()

in var() end

[exp1 , ··· , expn] exp1 :: ··· :: expn :: nil (n ≥ 0)

Figure 15: Derived forms of Expressions

strid is a new structure identifier and the form of sigexp ′ depends on the
form of sigexp as follows. If sigexp is simply a signature identifier sigid , then
sigexp ′ is also sigid ; otherwise sigexp must take the form sig spec1 end ,
and then sigexp ′ is sig local open strid in spec1 end end.
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Derived Form Equivalent Form

Patterns pat
() { }

(pat1 , ··· , patn) {1=pat1, ··· , n=patn} (n ≥ 2)
[pat1 , ··· , patn] pat1 :: ··· :: patn :: nil (n ≥ 0)

Pattern Rows patrow
id〈:ty〉 〈as pat〉 〈, patrow〉 id = id〈:ty〉 〈as pat〉 〈, patrow〉

Type Expressions ty
ty1 * ··· * tyn {1:ty1, ··· , n:tyn} (n ≥ 2)

Figure 16: Derived forms of Patterns and Type Expressions

Derived Form Equivalent Form

Function-value Bindings fvalbind
〈op〉var = fn var1=> ··· fn varn=>
case (var1, ··· , varn) of

〈op〉var atpat11···atpat1n〈:ty〉 = exp1 (atpat11,···,atpat1n )=>exp1〈:ty〉
|〈op〉var atpat21···atpat2n〈:ty〉 = exp2 |(atpat21,···,atpat2n )=>exp2〈:ty〉
| ··· ··· | ··· ···
|〈op〉var atpatm1···atpatmn〈:ty〉 = expm |(atpatm1,···,atpatmn )=>expm〈:ty〉

〈and fvalbind〉 〈and fvalbind〉
(m,n ≥ 1; var 1, ···, varn distinct and new)

Declarations dec
fun fvalbind val rec fvalbind
datatype datbind withtype typbind datatype datbind′ ; type typbind
abstype datbind withtype typbind abstype datbind′

with dec end with type typbind ; dec end

(see note in text concerning datbind′)

Figure 17: Derived forms of Function-value Bindings and Declarations



A APPENDIX: DERIVED FORMS 81

Derived Form Equivalent Form

Structure Expressions strexp
funid ( strdec ) funid ( struct strdec end )

Functor Bindings funbind
funid ( spec ) 〈: sigexp〉 = funid ( strid : sig spec end ) 〈: sigexp ′〉 =

strexp 〈and funbind〉 let open strid in strexp end 〈and funbind〉
(strid new; see note in text concerning sigexp ′)

Functor Signature Expressions funsigexp
( spec ) : sigexp ( strid : sig spec end ) : sigexp′

(strid new; see note in text concerning sigexp ′)

Top-level Declarations topdec
exp val it = exp

Figure 18: Derived forms of Functors and Top-level Declarations
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B Appendix: Full Grammar

The full grammar of programs is exactly as given at the start of Section 8.
The full grammar of Modules consists of the grammar of Figures 5–8 in

Section 3, together with the derived forms of Figure 18 in Appendix A.
The remainder of this Appendix is devoted to the full grammar of the

Core. Roughly, it consists of the grammar of Section 2 augmented by the de-
rived forms of Appendix A. But there is a further difference: two additional
subclasses of the phrase class Exp are introduced, namely AppExp (appli-
cation expressions) and InfExp (infix expressions). The inclusion relation
among the four classes is as follows:

AtExp ⊂ AppExp ⊂ InfExp ⊂ Exp

The effect is that certain phrases, such as “2 + while ··· do ··· ”, are now
disallowed.

The grammatical rules are displayed in Figures 19, 20, 21 and 22. The
grammatical conventions are exactly as in Section 2, namely:

• The brackets 〈 〉 enclose optional phrases.

• For any syntax class X (over which x ranges) we define the syntax class
Xseq (over which xseq ranges) as follows:

xseq ::= x (singleton sequence)
(empty sequence)

(x1,···,xn) (sequence, n ≥ 1)

(Note that the “···” used here, a meta-symbol indicating syntactic rep-
etition, must not be confused with “...” which is a reserved word of
the language.)

• Alternative forms for each phrase class are in order of decreasing prece-
dence. This precedence resolves ambiguity in parsing in the following
way. Suppose that a phrase class — we take exp as an example — has
two alternative forms F1 and F2, such that F1 ends with an exp and F2

starts with an exp. A specific case is

F1: if exp1 then exp2 else exp3

F2: exp handle match
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It will be enough to see how ambiguity is resolved in this specific case.

Suppose that the lexical sequence

··· ··· if ··· then ··· else exp handle ··· ···

is to be parsed, where exp stands for a lexical sequence which is already
determined as a subphrase (if necessary by applying the precedence
rule). Then the higher precedence of F2 (in this case) dictates that exp
associates to the right, i.e. that the correct parse takes the form

··· ··· if ··· then ··· else (exp handle ···) ···

not the form

··· (··· if ··· then ··· else exp) handle ··· ···

Note particularly that the use of precedence does not decrease the class
of admissible phrases; it merely rejects alternative ways of parsing cer-
tain phrases. In particular, the purpose is not to prevent a phrase,
which is an instance of a form with higher precedence, having a con-
stituent which is an instance of a form with lower precedence. Thus for
example

if ··· then while ··· do ··· else while ··· do ···

is quite admissible, and will be parsed as

if ··· then (while ··· do ···) else (while ··· do ···)

• L (resp. R) means left (resp. right) association.

• The syntax of types binds more tightly than that of expressions.

• Each iterated construct (e.g. match, ··· ) extends as far right as pos-
sible; thus, parentheses may be needed around an expression which
terminates with a match, e.g. “fn match”, if this occurs within a
larger match.
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atexp ::= scon special constant
〈op〉longvar value variable
〈op〉longcon value constructor
〈op〉longexcon exception constructor
{ 〈exprow〉 } record
# lab record selector
() 0-tuple
(exp1 , ··· , expn) n-tuple, n ≥ 2
[exp1 , ··· , expn] list, n ≥ 0
(exp1 ; ··· ; expn) sequence, n ≥ 2
let dec in exp1 ; ··· ; expn end local declaration, n ≥ 1
( exp )

exprow ::= lab = exp 〈 , exprow〉 expression row

appexp ::= atexp
appexp atexp application expression

infexp ::= appexp
infexp1 id infexp2 infix expression

exp ::= infexp
exp : ty typed (L)
exp1 andalso exp2 conjunction
exp1 orelse exp2 disjunction
exp handle match handle exception
raise exp raise exception
if exp1 then exp2 else exp3 conditional
while exp1 do exp2 iteration
case exp of match case analysis
fn match function

match ::= mrule 〈 | match〉

mrule ::= pat => exp

Figure 19: Grammar: Expressions and Matches
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dec ::= val valbind value declaration
fun fvalbind function declaration
type typbind type declaration
datatype datbind 〈withtype typbind〉 datatype declaration
abstype datbind 〈withtype typbind〉 abstype declaration

with dec end

exception exbind exception declaration
local dec1 in dec2 end local declaration
open longstrid1 ··· longstridn open declaration, n ≥ 1

empty declaration
dec1 〈;〉 dec2 sequential declaration
infix 〈d〉 id1 ··· idn infix (L) directive, n ≥ 1
infixr 〈d〉 id1 ··· idn infix (R) directive, n ≥ 1
nonfix id1 ··· idn nonfix directive, n ≥ 1

valbind ::= pat = exp 〈and valbind〉
rec valbind

fvalbind ::= 〈op〉var atpat11···atpat1n〈:ty〉=exp1 m,n ≥ 1
|〈op〉var atpat21···atpat2n〈:ty〉=exp2 See also note below
| ··· ···
|〈op〉var atpatm1···atpatmn〈:ty〉=expm

〈and fvalbind〉

typbind ::= tyvarseq tycon = ty 〈and typbind〉

datbind ::= tyvarseq tycon = conbind 〈and datbind〉

conbind ::= 〈op〉con 〈of ty〉 〈 | conbind〉

exbind ::= 〈op〉excon 〈of ty〉 〈and exbind〉
〈op〉excon = 〈op〉longexcon 〈and exbind〉

Note: In the fvalbind form, if var has infix status then either op must be
present, or var must be infixed. Thus, at the start of any clause, “ op var
(atpat,atpat′) ···” may be written “(atpat var atpat′) ···”; the parentheses
may also be dropped if “:ty” or “=” follows immediately.

Figure 20: Grammar: Declarations and Bindings
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atpat ::= wildcard
scon special constant
〈op〉var variable
〈op〉longcon constant
〈op〉longexcon exception constant
{ 〈patrow〉 } record
() 0-tuple
(pat1 , ··· , patn) n-tuple, n ≥ 2
[pat1 , ··· , patn] list, n ≥ 0
( pat )

patrow ::= ... wildcard
lab = pat 〈 , patrow〉 pattern row
id〈:ty〉 〈as pat〉 〈, patrow〉 label as variable

pat ::= atpat atomic
〈op〉longcon atpat value construction
〈op〉longexcon atpat exception construction
pat1 con pat2 infixed value construction
pat1 excon pat2 infixed exception construction
pat : ty typed
〈op〉var〈: ty〉 as pat layered

Figure 21: Grammar: Patterns

ty ::= tyvar type variable
{ 〈tyrow〉 } record type expression
tyseq longtycon type construction
ty1 * ··· * tyn tuple type, n ≥ 2
ty -> ty′ function type expression
( ty )

tyrow ::= lab : ty 〈 , tyrow〉 type-expression row

Figure 22: Grammar: Type expressions
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C Appendix: The Initial Static Basis

We shall indicate components of the initial basis by the subscript 0. The
initial static basis is

B0 = (M0, T0), F0, G0, E0

where

• M0 = ∅

• T0 = {bool, int, real, string, list, ref, exn, instream, outstream}

• F0 = {}

• G0 = {}

• E0 = (SE0, TE0, VE0, EE0)

The members of T0 are type names, not type constructors; for convenience
we have used type-constructor identifiers to stand also for the type names
which are bound to them in the initial static type environment TE0. Of these
type names, list and ref have arity 1, the rest have arity 0; all except
exn, instream and outstream admit equality.

The components of E0 are as follows:

• SE0 = {}

• VE0 is shown in Figures 23 and 24. Note that DomVE0 contains those
identifiers (true,false,nil, ::) which are basic value constructors, for
reasons discussed in Section 4.3. VE0 also includes EE0, for the same
reasons.

• TE0 is shown in Figure 25. Note that the type structures in TE0 contain
the type schemes of all basic value constructors.

• DomEE0 = BasExName , the set of basic exception names listed
in Section 6.5. In each case the associated type is exn , except that
EE0(Io) = string→ exn.
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NONFIX INFIX
var 7→ σ var 7→ σ
map 7→ ∀’a ’b. (’a→ ’b)→ Precedence 7 :

’a list→ ’b list / 7→ real ∗ real→ real

rev 7→ ∀’a. ’a list→ ’a list div 7→ int ∗ int→ int

not 7→ bool→ bool mod 7→ int ∗ int→ int

~ 7→ num→ num * 7→ num ∗ num→ num

abs 7→ num→ num Precedence 6 :
floor 7→ real→ int + 7→ num ∗ num→ num

real 7→ int→ real - 7→ num ∗ num→ num

sqrt 7→ real→ real ^ 7→ string ∗ string→ string

sin 7→ real→ real Precedence 5 :
cos 7→ real→ real :: 7→ ∀’a.’a ∗ ’a list→ ’a list

arctan 7→ real→ real @ 7→ ∀’a. ’a list

exp 7→ real→ real ∗ ’a list→ ’a list

ln 7→ real→ real Precedence 4 :
size 7→ string→ int = 7→ ∀’’a. ’’a ∗ ’’a→ bool

chr 7→ int→ string <> 7→ ∀’’a. ’’a ∗ ’’a→ bool

ord 7→ string→ int < 7→ num ∗ num→ bool

explode 7→ string→ string list > 7→ num ∗ num→ bool

implode 7→ string list→ string <= 7→ num ∗ num→ bool

! 7→ ∀’a. ’a ref→ ’a >= 7→ num ∗ num→ bool

ref 7→ ∀ ’ a . ’ a→ ’ a ref Precedence 3 :
true 7→ bool := 7→ ∀’a. ’a ref ∗ ’a→ unit

false 7→ bool o 7→ ∀’a ’b ’c. (’b→ ’c)
nil 7→ ∀’a. ’a list ∗ (’a→ ’b)→ (’a→ ’c)

Notes:

• In type schemes we have taken the liberty of writing ty1 ∗ ty2 in place
of {1 7→ ty1, 2 7→ ty2}.

• An identifier with type involving num stands for two functions – one in
which num is replaced by int in its type, and another in which num is
replaced by real in its type. Sometimes an explicit type constraint
will be needed if the surrounding text does not determine the type
of a particular occurrence of + (for example). For this purpose, the
surrounding text is no larger than the enclosing top-level declaration;
an implementation may require that a smaller context determines the
type.

Figure 23: Static VE0 (except for Input/Output and EE0)
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var 7→ σ
std in 7→ instream

open in 7→ string→ instream

input 7→ instream ∗ int→ string

lookahead 7→ instream→ string

close in 7→ instream→ unit

end of stream 7→ instream→ bool

std out 7→ outstream

open out 7→ string→ outstream

output 7→ outstream ∗ string→ unit

close out 7→ outstream→ unit

Figure 24: Static VE0 (Input/Output)

tycon 7→ { θ, {con1 7→ σ1, . . . , conn 7→ σn} } (n ≥ 0)
unit 7→ { Λ().{}, {} }
bool 7→ { bool, {true 7→ bool, false 7→ bool} }
int 7→ { int, {} }

real 7→ { real, {} }
string 7→ { string, {} }

list 7→ { list, {nil 7→ ∀’a . ’a list,
+::+ 7→ ∀’a . ’a ∗ ’a list→ ’a list} }

ref 7→ { ref, {ref 7→ ∀ ’ a . ’ a→ ’ a ref} }
exn 7→ { exn, {} }

instream 7→ { instream, {} }
outstream 7→ { outstream, {} }

Figure 25: Static TE0
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D Appendix: The Initial Dynamic Basis

We shall indicate components of the initial basis by the subscript 0. The
initial dynamic basis is

B0 = F0, G0, E0

where

• F0 = {}

• G0 = {}

• E0 = E ′0 + E ′′0

E ′0 contains bindings of identifiers to the basic values BasVal and basic ex-
ception names BasExName; in fact E ′0 = SE ′0, VE

′
0, EE

′
0 , where:

• SE ′0 = {}

• VE ′0 = {id 7→ id ; id ∈ BasVal} ∪ {:= 7→ :=}

• EE ′0 = {id 7→ id ; id ∈ BasExName}

Note that VE ′0 is the identity function on BasVal; this is because we have
chosen to denote these values by the names of variables to which they are
initially bound. The semantics of these basic values (most of which are func-
tions) lies principally in their behaviour under APPLY, which we describe
below. On the other hand the semantics of := is provided by a special seman-
tic rule, rule 115. Similarly, EE ′0 is the identity function on BasExName, the
set of basic exception names, because we have also chosen these names to be
just those exception constructors to which they are initially bound. These
exceptions are raised by APPLY as described below.

E ′′0 contains initial variable bindings which, unlike BasVal, are definable
in ML; it is the result of evaluating the following declaration in the basis
F0, G0, E

′
0. For convenience, we have also included all basic infix directives

in this declaration.

infix 3 o

infix 4 = <> < > <= >=

infix 5 @

infixr 5 ::

infix 6 + - ^
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infix 7 div mod / *

fun (F o G)x = F(G x)

fun nil @ M = M

| (x::L) @ M = x::(L @ M)

fun s ^ s’ = implode((explode s) @ (explode s’))

fun map F nil = nil

| map F (x::L) = (F x)::(map F L)

fun rev nil = nil

| rev (x::L) = (rev L) @ [x]

fun not true = false

| not false = true

fun ! (ref x) = x

We now describe the effect of APPLY upon each value b ∈ BasVal. For
special values, we shall normally use i, r, n, s to range over integers, reals,
numbers (integer or real), strings respectively. We also take the liberty of
abbreviating “APPLY(abs, r)” to “abs(r)”, “APPLY(mod, {1 7→ i, 2 7→ d})”
to “i mod d”, etc. .

• ~(n) returns the negation of n, or the packet [Neg] if the result is out
of range.

• abs(n) returns the absolute value of n, or the packet [Abs] if the
result is out of range.

• floor(r) returns the largest integer i not greater than r; it returns the
packet [Floor] if i is out of range.

• real(i) returns the real value equal to i.

• sqrt(r) returns the square root of r, or the packet [Sqrt] if r is
negative.
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• sin(r) , cos(r) return the result of the appropriate trigonometric func-
tions.

• arctan(r) returns the result of the appropriate trigonometric function
in the range +π/2.

• exp(r) , ln(r) return respectively the exponential and the natural
logarithm of r, or an exception packet [Exp] or [Ln] if the result is
out of range.

• size(s) returns the number of characters in s.

• chr(i) returns the character numbered i (see Section 2.2) if i is in the
interval [0, 255], and the packet [Chr] otherwise.

• ord(s) returns the number of the first character in s (an integer in the
interval [0, 255], see Section 2.2), or the packet [Ord] if s is empty.

• explode(s) returns the list of characters (as single-character strings)
of which s consists.

• implode(L) returns the string formed by concatenating all members
of the list L of strings.

• The arithmetic functions /,*,+,- all return the results of the usual
arithmetic operations, or exception packets respectively [Quot], [Prod],
[Sum], [Diff] if the result is undefined or out of range.

• i mod d , i div d return integers r, q (remainder, quotient) determined
by the equation d × q + r = i, where either 0 ≤ r < d or d < r ≤ 0.
Thus the remainder has the same sign as the divisor d. The packet
[Mod] or [Div] is returned if d = 0.

• The order relations <,>,<=,>= return boolean values in accord with
their usual meanings.

• v1 = v2 returns true or false according as the values v1 and v2 are,
or are not, identical. The type discipline (in particular, the fact that
function types do not admit equality) ensures that equality is only ever
applied to special values, nullary constructors, addresses, and values
built out of such by record formation and constructor application.
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• v1 <> v2 returns the opposite boolean value to v1 = v2.

It remains to define the effect of APPLY upon basic values concerned with
input/output; we therefore proceed to describe the ML input/output system.

Input/Output in ML uses the concept of a stream. A stream is a finite
or infinite sequence of characters; if finite, it may or may not be terminated.
(It may be convenient to think of a special end-of-stream character signifying
termination, provided one realises that this “character” is never treated as
data). Input streams – or instreams – are of type instream and will be
denoted by is ; output streams – or outstreams – are of type outstream and
will be denoted by os . Both these types of stream are abstract, in the sense
that streams may only be manipulated by the functions provided in BasVal.

Associated with an instream is a producer, normally an I/O device or file;
similarly an outstream is associated with a consumer. After this association
has been established – either initially or by the open in or open out func-
tion – the stream acts as a vehicle for character transmission from producer
to program, or from program to consumer. The association can be broken by
the close in or close out function. A closed stream permits no further
character transmission; a closed instream is equivalent to one which is empty
and terminated.

There are two streams in BasVal:

• std in: an instream whose producer is the terminal.

• std out: an outstream whose consumer is the terminal.

The other basic values concerned with Input/Output are all functional, and
the effect of APPLY upon each of them given below. We take the liberty of
abbreviating “APPLY(open in, s)” to “open in(s)” etc., and we shall use
s and n to range over strings and integers respectively.

• open in(s) returns a new instream is , whose producer is the external
file named s . It returns exception packet

[(Io,"Cannot open s")]

if file s does not exist or does not provide read access.

• open out(s) returns a new outstream os , whose consumer is the
external file named s . If file s is non-existent, it is taken to be
initially empty.
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• input(is, n) returns a string s containing the first n characters of
is , also removing them from is . If only k < n characters are available
on is , then

– If is is terminated after these k characters, the returned string
s contains them alone, and they are removed from is .

– Otherwise no result is returned until the producer of is either
supplies n characters or terminates the stream.

• lookahead(is) returns a single-character string s containing the next
character of is , without removing it. If no character is available on
is then

– If is is closed, the empty string is returned.

– Otherwise no result is returned until the producer of is either
supplies a character or closes the stream.

• close in(is) empties and terminates the instream is .

• end of stream(is) returns true if lookahead(is) returns the empty
string, false otherwise; it detects the end of the instream is .

• output(os, s) writes the characters of s to the outstream os , unless
os is closed, in which case it returns the exception packet

[(Io,"Output stream is closed")]

• close out(os) terminates the outstream os .
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E Appendix: The Development of ML

This Appendix records the main stages in the development of ML, and the
people principally involved. The main emphasis is upon the design of the
language; there is also a section devoted to implementation. On the other
hand, no attempt is made to record work on implementation environments,
or on applications of the language.

Origins

ML and its semantic description have evolved over a period of about fourteen
years. It is a fusion of many ideas from many people; in this appendix we
try to record and to acknowledge the important precursors of its ideas, the
important influences upon it, and the important contributions to its design,
implementation and semantic description.

ML, which stands for meta language, was conceived as a medium for find-
ing and performing proofs in a formal logical system. This application was
the focus of the initial design effort, by Robin Milner in collaboration first
with Malcolm Newey and Lockwood Morris, then with Michael Gordon and
Christopher Wadsworth [11]. The intended application to proof affected the
design considerably. Higher order functions in full generality seemed neces-
sary for programming proof tactics and strategies, and also a robust type
system (see below). At the same time, imperative features were important
for practical reasons; no-one had experience of large useful programs written
in a pure functional style. In particular, an exception-raising mechanism was
highly desirable for the natural presentation of tactics.

The full definition of this first version of ML was included in a book [12]
which describes LCF, the proof system which ML was designed to support.
The details of how the proof application exerted an influence on design is
reported by Milner [24]. Other early influences were the applicative languages
already in use in Artificial Intelligence, principally LISP [21], ISWIM [19] and
POP2 [5].

Polymorphic types

The polymorphic type discipline and the associated type-assignment algo-
rithm were prompted by the need for security; it is vital to know that when
a program produces an object which it claims to be a theorem, then it is
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indeed a theorem. A type discipline provides the security, but a polymorphic
discipline also permits considerable flexibility.

The key ideas of the type discipline were evolved in combinatory logic
by Haskell Curry and Roger Hindley, who arrived at different but equiva-
lent algorithms for computing principal type schemes. Curry’s [7] algorithm
was by equation-solving; Hindley [14] used the unification algorithm of Alan
Robinson [29] and also presented the precursor of our type inference sys-
tem. James Morris [26] independently gave an equation-solving algorithm
very similar to Curry’s. The idea of an algorithm for finding principal type
schemes is very natural and may well have been known earlier. I am grateful
to Roger Hindley for pointing out that Carew Meredith’s inference rule for
propositional logic called Condensed Detachment, defined in the early 1950s,
clearly suggests that he knew such an algorithm [22].

Milner [23], during the design of ML, rediscovered principal types and
their calculation by unification, for a language (slightly richer than combi-
natory logic) containing local declarations. He and Damas [9] presented the
ML type inference systems following Hindley’s style. Damas [8], using ideas
from Michael Gordon, also devised the first mathematical treatment of poly-
morphism in the presence of references and assignment. Tofte [32] produced
a different scheme, which has been adopted in the language.

Refinement of the Core Language

Two movements led to the re-design of ML. One was the work of Rod Burstall
and his group on specifications, crystallised in the specification language
CLEAR [4] and in the functional programming language HOPE [3]; the latter
was for expressing executable specifications. The outcome of this work which
is relevant here was twofold. First, there were elegant programming features
in HOPE, particularly pattern matching and clausal function definitions;
second, there were ideas on modular construction of specifications, using
signatures in the interfaces. A smaller but significant movement was by Luca
Cardelli, who extended the data-type repertoire in ML by adding named
records and variant types.

In 1983, Milner (prompted by Bernard Sufrin) wrote the first draft of a
standard form of ML attempting to unite these ideas; over the next three
years it evolved into the Standard ML Core Language. Notable here was the
harmony found among polymorphism, HOPE patterns and Cardelli records,
and the nice generalisations of ML exceptions due to ideas from Alan Mycroft,
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Brian Monahan and Don Sannella. A simple stream-based I/O mechanism
was developed from ideas of Cardelli by Milner and Harper. The Standard
ML Core Language is described in detail in a composite report [15] which
also contains a description of the I/O mechanism and MacQueen’s proposal
for program modules (see later for discussion of this). Since then only few
changes to the Core Language have occurred. Milner proposed equality types,
and these were added, together with a few minor adjustments [25]. The latest
and final development has been in the exception mechanism, by MacQueen
using an idea from Burstall [1]; it unites the ideas of exception and data type
construction.

Modules

Besides contributory ideas to the Core Language, HOPE [3] contained a
simple notion of program module. The most important and original feature of
ML Modules, however, stems from the work on parameterised specifications
in CLEAR [4]. MacQueen, who was a member of Burstall’s group at the
time, designed [20] a new parametric module feature for HOPE inspired by
the CLEAR work. He later extended the parameterisation ideas by a novel
method of specifying sharing of components among the structure parameters
of a functor, and produced a draft design which accommodated features
already present in ML – in particular the polymorphic type system. This
design was discussed in detail at Edinburgh, leading to MacQueen’s first
report on Modules [15].

Thereafter, the design came under close scrutiny through a draft op-
erational static semantics and prototype implementation of it by Harper,
through Kevin Mitchell’s implementation of the evaluation, through a deno-
tational semantics written by Don Sannella, and then through further work
on operational semantics by Milner and Tofte. (More is said about this in
the later section on Semantics.) In all of this work the central ideas with-
stood scrutiny, while it also became clear that there were gaps in the design
and ambiguities in interpretation. (An example of a gap was the inability
to specify sharing between a functor argument structure and its result struc-
ture; an example of an ambiguity was the question of whether sharing exists
in a structure over and above what is specified in the signature expression
which accompanies its declaration.)

Much discussion ensued; it was possible for a wider group to comment on
Modules through using Harper’s prototype implementation, while Harper,
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Milner and Tofte gained understanding during development of this seman-
tics. In parallel, Sannella and Tarlecki explored the implications of Modules
for the methodology of program development [30]. Tofte, in his thesis [31],
proved several technical properties of Modules in a skeletal language, which
generated considerable confidence in this design. A key point in this devel-
opment was the proof of the existence of principal signatures, and, in the
careful distinction between the notion of enrichment of structures, which al-
lows more polymorphism and more components, and realisation which allows
more sharing.

At a meeting in Edinburgh in 1987 a choice of two designs was presented,
hinging upon whether or not a functor application should coerce its actual
argument to its argument signature. The meeting chose coercion, and there-
after the production of Section 5 of this report – the Static Semantics of
Modules – was a matter of detailed care. That section is undoubtedly the
most original and demanding part of this semantics, just as the ideas of
MacQueen upon which it is based are the most far-reaching extension to the
original design of ML.

Implementation

The first implementation of ML was by Malcolm Newey, Lockwood Mor-
ris and Robin Milner in 1974, for the DEC10. Later Mike Gordon and
Chris Wadsworth joined; their work was mainly in specialising ML towards
machine-assisted reasoning. Around 1980 Luca Cardelli implemented a ver-
sion on VAX; his work was later extended by Alan Mycroft, Kevin Mitchell
and John Scott. This version contained one or two new data-type features,
and was based upon the Functional Abstract Machine (FAM), a virtual ma-
chine which has been a considerable stimulus to later implementation. By
providing a reasonably efficient implementation, this work enabled the lan-
guage to be taught to students; this, in turn, prompted the idea that it could
become a useful general purpose language.

In Gothenburg, an implementation was developed by Lennart Augustsson
and Thomas Johnsson in 1982, using lazy evaluation rather than call-by-
value; the result was called Lazy ML and is reported in [2]. This work is part
of continuing research in many places on implementation of lazy evaluation
in pure functional languages. But for ML, which includes exceptions and
assignment, the emphasis has been mainly upon strict evaluation (call-by-
value).
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In Cambridge, in the early 1980s, Larry Paulson made considerable im-
provements to the Edinburgh ML compiler, as part of his wider programme of
improving Edinburgh LCF to become Cambridge LCF [27]. This system has
supported larger proofs than the Edinburgh system, and with greater conve-
nience; in particular, the compiled ML code ran four to five times faster.

Around the same time Gérard Huet at INRIA (Versailles) adapted ML
to Maclisp on Multics, again for use in machine-assisted proof. There was
close collaboration between INRIA and Cambridge in this period. ML has
undergone a separate development in the group at INRIA, arriving at a
language and implementation known as CAML [6]; this is close to the core
language of Standard ML, but does not include the Modules.

The first implementation of the Standard ML core language was by Mitchell,
Mycroft and John Scott of Edinburgh, around 1984, and this was shortly fol-
lowed by an implementation by David Matthews at Cambridge, carried out
in his language Poly.

The prototype implementation of Modules, before that part of the lan-
guage settled down, was done in 1985-6; Mitchell dealt with evaluation, while
Harper tackled the elaboration (or ‘signature checking’) which raised prob-
lems of a kind not previously encountered. The Edinburgh implementation
continues to play the role of a test-bed for language development.

Meanwhile Matthews’ Cambridge implementation also advanced to em-
brace Modules. This implementation has supported applications of consid-
erable size, both for machine-assisted proof and for hardware design.

In 1986, as the Modules definition was settling down, David MacQueen
began an implementation at Bell AT&T Laboratories, joined later by Andrew
Appel and Trevor Jim who are particularly interested in compilation into high
quality machine code.

The Bell and Cambridge implementations, the former led by MacQueen
and Appel, the latter by Matthews, are currently the most complete and
highly engineered. Other currently active implementations are by Michael
Hedlund at the Rutherford-Appleton Laboratory, by Robert Duncan, Simon
Nichols and Aaron Sloman at the University of Sussex (POPLOG) and by
Malcolm Newey and his group at the Australian National University.

Semantics

The description of the first version of ML [12] was informal, and in an op-
erational style; around the same time a denotational semantics was written,
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but never published, by Mike Gordon and Robin Milner. Meanwhile struc-
tured operational semantics, presented as an inference system, was gaining
credence as a tractable medium. This originates with the reduction rules
of λ-calculus, but was developed more widely through the work of Plotkin
[28], and also by Milner. This was at first only used for dynamic semantics,
but later the benefit of using inference systems for both static and dynamic
semantics became apparent. This advantage was realised when Gilles Kahn
and his group at INRIA were able to execute early versions of both forms
of semantics for the ML Core Language using their Typol system [10]. The
static and dynamic semantics of the Core reached a final form mostly through
work by Mads Tofte and Robin Milner.

The modules of ML presented little difficulty as far as dynamic semantics
is concerned, but the static semantics of Modules was a concerted effort by
several people. MacQueen’s original informal description [15] was the start-
ing point; Sannella wrote a denotational semantics for several versions, which
showed that several issues had not been settled by the informal description.
Robert Harper, while writing the first implementation of Modules, made the
first draft of the static semantics. Harper’s version made clear the impor-
tance of structure names; work by Milner and Tofte introduced further ideas
including realisation; thereafter a concerted effort by all three led to several
suggestions for modification of the language, and a small range of alterna-
tive interpretations; these were assessed in discussion with MacQueen, and
more widely with the principal users of the language, and an agreed form
was reached.

There is no doubt that the interaction between design and semantic de-
scription of Modules has been one of the most striking phases in the entire
language development, leading (in the opinion of those involved) to a high
degree of confidence both in the language and in the semantic method.

Literature

The present document is the definition of Standard ML; further versions of it
will be produced as the language develops (but the intention is to minimise
the number of versions). An informal definition, consistent with Version 2
of this document as far as the Core Language is concerned, is provided by
[15], as modified by [25] and [1]. An elementary textbook covering the Core
language has been recently published, written by rAke Wikström [33]. Robert
Harper [13] has written a shorter introduction which also includes material
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on Modules.
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Index

() (0-tuple), 79, 80, 84, 86
( ), 3

in expression, 9, 10, 29, 61, 79,
83, 84

in pattern, 11, 34, 65, 80, 86
in sequence, 8, 82
in type expression, 11, 35, 86

[ ], 3, 79, 80, 84, 86
{ }, 3

in atomic expression, 10, 29, 61,
84

in pattern, 11, 34, 65, 86
in record type expression, 11, 35,

86
(* *) (comment brackets), 4, 6
, (comma), 3, 8, 79, 82, 84, 86
... (wildcard pattern row), 3, 11, 34,

36, 66, 86
_ (underbar)

wildcard pattern, 3, 34, 65, 86
in identifier, 4

|, 3, 4, 84, 85
= (reserved word), 3
= (identifier and basic value), 4, 56,

90, 92
=>, 3

in a match rule, 10, 84
->, 3, 11, 35, 86
~, 3, 4, 56, 88, 91
. (period)

in real constants, 3
in long identifiers, 4

", 3
\, 3, 4
!, 4, 88, 91

%, 4
&, 4
$, 4
#, 3, 4, 79, 84
+, 4, 56, 88, 90, 92
-, 4, 56, 88, 90, 92
/, 4, 56, 88, 90, 92
: (see also type constraint), 4
::, 87–90
:= (assignment), 57, 61, 88, 90
<, 4, 56, 88, 90, 92
>, 4, 56, 88, 90, 92
<=, 56, 88, 90, 92
>=, 56, 88, 90, 92
<>, 56, 88, 90, 92
?, 4
@, 4, 88, 90
’, 4
^, 3, 4, 88, 90
*, 4, 5, 56, 80, 86, 88, 90, 92
{} (empty map), 22
+ (modification), 22, 60
⊕, 24, 39
Λ (in type function), 22, 24, 32
∀ (in type scheme), 22, 25

see also generalisation
α (see type variable)
% (see record type)
τ (see type)
τ (k) (type vector), 23, 24
σ (type scheme), 23, 25, 26, 28, 33,

42, 50, 88, 89
∀α(k).τ (see type scheme)
→ (function type), 23, 29, 35
↓ (restriction), 69

106
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θ (see type function)
(θ, CE) (see type structure)
Λα(k).τ (see type function)
Σ (see signature)
(N)S (see signature)
Φ (see functor signature)
(N)(S, (N ′)S ′) (see functor signature)
ϕTy (type realisation), 40
ϕStr (structure realisation), 41
ϕ (realisation), 41–43, 54
≥ (see instance)
� (see generalisation and enrichment)
` (turnstile), 2, 28, 29, 45, 59, 70, 75
`DYN (evaluation), 75
`STAT (elaboration), 75
⇒, 2, 28, 45, 59, 70, 75
〈 〉 (see options)
〈′〉, 47

A

a (see address)
Abs (abstype operation), 27, 31
abs, 56, 88, 91
Abs, 57, 91
abstype, 3, 10, 27, 31, 80, 85
abstype declaration, 10, 27, 31, 85
addition of numbers (+), 4, 56, 88, 90,

92
Addr (addresses), 55, 57
address (a), 55

fresh, 61
admissibility, 40, 43
admit equality, 24, 27, 32, 40, 43, 49,

87, 92
and, 3, 17–19, 85
andalso, 3, 79, 84
appending lists (@), 4, 88, 90

appexp (application expression), 82,
84

application, 10, 29
of basic value (APPLY), 56, 62,

91
of (function) closure, 62
of value constructor, 61
of exception name, 61
of ref, 61
of :=, 61, 88
infixed, 10

application of functor (see functor ap-
plication)

application of type function, 24, 35
application expression, 82, 84
applicative type variable (see type vari-

able)
APPLY (see application)
AppTyVar (applicative type variables),

5
apptyvars (free applicative type vari-

ables), 22
arctan, 56, 88, 91
arity

of type name, 21
of type function, 24, 50

arrow type (see function type expres-
sion)

as, 3, 11, 35, 66, 86
assignment (:=), 57, 61, 88, 90
atexp (atomic expression), 8, 10, 28,

60, 79, 84
atomic expression, 8, 10, 28, 60, 79,

84
as expression, 10, 29, 61

atomic pattern, 8, 11, 34, 65, 80, 86
as pattern, 11, 35, 66, 86
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atpat (atomic pattern), 8, 11, 34, 65,
80, 86

B

b (see basic value)
B (see basis)
B0 (initial basis)

static, 87
dynamic, 90

bare language, 1
BasExName (basic exception names),

57, 90
basic value (b), 55, 56, 90–94
basis (B), 1

static, 28, 38, 45, 75, 87
dynamic, 68, 75, 90
combined, 75

Basis (bases), 38, 68, 75
BasVal (basic values), 55, 56, 90–94
BDYN (dynamic basis), 75
Bind (exception), 57, 64
bool, 87, 89
bound names, 38, 39, 41
BSTAT (static basis), 75

C

C (context), 23–22, 28–36
“Cannot open s”, 93
case, 3, 79, 84
CE (constructor environment), 23, 27,

33, 51
chr, 56, 88, 91
Chr, 57, 91
Clos (closure of types etc.), 26, 31,

33, 49, 50
close_in, 56, 89, 92, 93
close_out, 56, 89, 93

Closure (function closures), 57
recursion, 58

closure rules (signatures and functors),
19, 48, 52

coercion of numbers (real), 56, 88,
91

comments, 4, 6
composition of functions (o), 88, 90
con (see value constructor)
Con (value constructors), 4, 57
conbind (constructor binding), 8, 10,

33, 85
ConBind (constructor bindings), 8, 55
concatenating strings (^), 4, 88, 90
condesc (constructor description), 15,

17, 18, 50, 68
ConDesc (constructor descriptions), 15,

68
ConEnv (constructor environments),

23
“consing” an element to a list (::),

87–90
consistency

of type structures, 39, 51
of semantic object, 39, 40, 51

constant (see also value constant and
exception constant)

special (see special constant)
construction (see value construction

and exception construction)
constructor binding (conbind), 8, 10,

33, 85
constructor description, 15, 17, 18,

50, 68
constructor environment (CE), 23, 27,

33, 51
ConsType (constructed types), 23
contents of (see dereferencing)
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context (C), 23–22, 28–36
Context (contexts), 23
control character, 3
Core Language, 1

syntax, 3
static semantics, 21
dynamic semantics, 55

Core Language Programs, 77
cos, 56, 88, 91
cover, 43
cycle-freedom, 40

D

datatype, 3, 10, 18, 31, 49, 68, 80, 85
datatype binding, 8, 10, 33, 85
datatype declaration, 10, 31, 85
datatype description, 15, 18, 50
datatype specification, 18, 49, 68
datbind (datatype binding), 8, 10, 33,

85
DatBind (datatype bindings), 8, 55
datdesc (datatype description), 15, 18,

50
DatDesc (datatype descriptions), 15,

68
dec (declaration), 8, 10, 31, 64, 80, 85
Dec (declarations), 8
declaration (Core), 8, 10, 31, 64, 80,

85
as structure-level declaration, 17,

46, 71
dereferencing (!), 4, 88, 91
derived forms, 1, 7, 13, 78–81
Diff, 57, 92
digit

in identifier, 4
in integers and reals, 3

dir (fixity directive), 7, 10, 13
directive, 10
div, 56, 88, 90, 92
Div, 57, 92
division of reals (/), 56, 88, 90, 92
do, 3, 79, 84
Dom (domain), 22
dynamic

semantics (Core), 55
semantics (Modules), 68
basis (see basis)

E

e (exception value), 57
[e] (see packet)
E (exponent), 3
E (environment)

static, 23, 27, 28, 31, 32
dynamic, 57, 60–67, 69, 70

EE (see exception constructor envi-
ronment)

elaboration, 1, 2, 28, 45, 75
else, 3, 79, 84
empty

declaration (Core), 10, 31, 64, 85
functor declaration, 19, 52, 73
functor specification, 19, 52
signature declaration, 17, 48, 72
specification, 18, 49, 72
structure-level declaration, 17, 46,

71
en (exception name), 55, 64
end, 3, 10, 17, 18, 84, 85
end_of_stream, 56, 89, 93
enrichment (�), 36, 42, 45, 47, 53
ens (exception name set), 57, 64
Env (environments), 23, 57
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eqtype, 13, 18, 49, 68
equality

admit equality, 24, 27, 32, 40, 43,
49, 87, 92

maximise equality, 27, 31
on abstract types, 27
of structures (sharing), 51
of type functions (sharing), 24, 51
of type schemes, 25
of values, 24, 88, 90, 92
-principal, 43, 48, 52, 53
respect equality, 27, 32, 43

equality attribute
of type name, 21, 24, 27, 40, 43,

49
of type variable, 5, 21, 24, 25

equality type, 24, 88
equality type function, 24
equality type specification, 18, 49, 68
equality type variable, 5, 21, 24
escape sequence, 3
evaluation, 1, 2, 59, 70, 75
exbind (exception binding), 8, 10, 33,

64, 85
ExBind (exception bindings), 8
exception, 3, 10, 18, 31, 49, 64, 72,

85
exception binding, 8, 10, 33, 64, 85
exception constant (excon or longexcon)

as atomic pattern, 11, 34, 65, 86
exception construction

as pattern, 11, 35, 66, 86
infixed, as pattern, 7, 11, 86

exception constructor
as atomic expression, 10, 28, 61,

84
exception constructor environment (EE)

static, 23–22, 33, 69

dynamic, 57, 64, 69
exception convention, 60–62, 76
exception declaration, 10, 31, 64, 85
exception description, 15, 18, 51, 73
exception name (en), 55

fresh, 64
exception name set (ens), 57, 64
exception packet (see packet)
exception specification, 18, 49, 72
exception value (e), 57
excon (see exception constant or con-

structor)
ExCon (exception constructors), 4
ExConEnv (exception constructor en-

vironments), 23, 57
excons (exeption constructor set), 68,

73
exdesc (exception description), 15, 18,

51, 73
ExDesc (exception descriptions), 15
execution, 1, 75
exhaustive patterns, 36, 57
exn, 29, 34, 35, 51, 87, 89
ExName (exception names), 55
ExNameSet (exception name sets), 57
exp (expression), 8, 10, 29, 61, 79, 84
Exp (expressions), 8
exp (exponential), 56, 88, 91
Exp, 57, 91
expansive expression, 26
explode (a string), 56, 88, 92
expression, 8, 10, 29, 61, 79, 84
expression row, 8, 10, 29, 61, 84
exprow (expression row), 8, 10, 29,

61, 84
ExpRow (expression rows), 8
ExVal (exception values), 57
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F

F (functor environment), 38, 52, 53,
68, 73

FAIL (failure in pattern matching),
55, 60–63, 65–67

false, 87–89
fin→ (finite map), 22
Fin (finite subset), 22
floor, 56, 88, 91
Floor, 57, 91
fn, 3, 10, 11, 29, 62, 84
formatting character, 4
fun, 3, 78, 80, 85
funbind (functor binding), 15, 19, 53,

73, 78, 81
FunBind (functor bindings), 15
function (fn match), 10, 29, 62, 84
function declaration (see fun)
function type (→), 23, 29, 35
function type expression (->), 11, 35,

86
function-value binding (fvalbind), 36,

78, 80, 85
functor, 13, 19, 52, 73
functor application, 17, 45, 70, 81
functor binding, 15, 19, 53, 73, 78, 81
functor closure, 68, 70, 73
functor declaration, 15, 19, 52, 73

as top-level declaration, 19, 53, 74
functor description, 15, 19, 52
functor environment (F ), 38, 52, 53,

68, 73
functor identifier (funid), 13, 17, 19
functor signature (Φ), 38, 52–54
functor signature expression, 15, 19,

52, 81
functor signature matching, 15, 54

functor specification, 15, 19, 52
FunctorClosure (functor closures), 68
fundec (functor declaration), 15, 19,

52, 73
FunDec (functor declarations), 15
fundesc (functor description), 15, 19,

52
FunDesc (functor descriptions), 15
FunEnv (functor environments), 38,

68
funid (functor identifier), 13, 17, 19
FunId (functor identifiers), 13
funsigexp (functor signature expres-

sion), 15, 19, 52, 81
FunSigExp (functor signature expres-

sions), 15
funspec (functor specification), 15, 19,

52
FunSpec (functor specifications), 15
FunType (function types), 23
fvalbind (function-value binding), 78,

80, 85
exhaustive, 36

G

G (signature environment), 38, 48, 68,
72

generalisation (�), 25, 28, 34–36, 42
generative signature expression, 17,

47, 71
generative structure expression, 17, 45,

70
grammar, 1

for the Core, 7, 82
for Modules, 14

H
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handle, 3, 10, 29, 62, 84

I

I (interface), 68, 71, 72
IB (interface basis), 68, 69, 71–73
identifier (id), 4, 13

alphanumeric, 4
long, 4, 77
qualified, 4
symbolic, 4

IE (interface environment), 68, 73
if, 3, 79, 84
imperative attribute, 21, 24, 25
imperative type, 24, 33
imperative type variable (see type vari-

able)
implementation, 1, 75
implode (a string list), 56, 88, 92
ImpTyVar (imperative type variables),

5
imptyvars (free imperative type vari-

ables), 22, 53
in (injection), 22
in, 3, 10, 17, 18, 79, 84, 85
include, 13, 18, 49, 72
inference, 2
inference rules

static semantics (Core), 28
static semantics (Modules), 45
dynamic semantics (Core), 58
dynamic semantics (Modules), 70

infexp (infix expression), 82, 84
InfExp (infix expressions), 82, 84
infix, 3, 6, 10, 85
infix expression, 6, 10, 82, 84
infix pattern, 6, 11, 86
infixed identifiers, 6, 10, 13, 84–86, 88

infixr, 3, 6, 10, 85
initial basis, 2, 87, 90
injection (in), 22
input, 56, 89, 93
input/output, 89, 92
instance (≥)

of signature, 41–43, 47, 49
of functor signature, 41, 45
in matching, 42, 43

instream, 87, 89, 92
int, 87, 89
Int (interfaces), 68
IntBasis (interface bases), 68
integer constant, 3, 89
IntEnv (interface environments), 68
Inter, 68, 71, 73
interaction, 1, 75
interface (I), 68, 71, 72
interface basis (IB), 68, 69, 71–73
interface environment (IE), 68, 73
Interrupt, 57, 76
Io, 57, 93
irredundant patterns, 36, 57
it, 80

L

L (left associative), 8, 83
lab (label), 4, 5
Lab (labels), 4, 5
let, 3

expression (Core), 10, 29, 61, 79,
84

expression (Modules), 17, 45, 70
letter in identifer, 4
lexical analysis, 6, 7
list, 87, 89
list reversal (rev), 88, 91
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ln, 56, 88, 91
Ln, 57, 91
local, 3

declaration (Core), 10, 31, 64, 85
declaration (Modules), 17, 46, 71
specification (Modules), 18, 49, 72

long identifiers (e.g. longexcon), 4, 77
lookahead, 56, 89, 93

M

m (structure name), 21, 23–22, 38–
42, 47, 51, 56

fresh, 45, 46
M (structure name set), 38, 45
map, 88, 91
match (match), 8, 10, 30, 63

irredundant, 36, 57
exhaustive, 36, 57
in closure, 57, 58

Match, 8
Match (exception), 57, 62
match rule, 8, 10, 30, 63
matching

signatures (see signature match-
ing)

functor signatures (see functor sig-
nature matching)

maximise equality, 27, 31
mem (memory), 57, 61, 66
Mem (memories), 57
memory (mem), 57, 61, 66
mod, 56, 88, 90, 92
Mod, 57, 92
modification (+)

of finite maps, 22
of environments, 22, 60

module, 15

Modules, 1
mrule (match rule), 8, 10, 30, 63
Mrule (match rules), 8
multiplication of numbers (*), 56, 88,

90, 92

N

n (name, see structure name, type
name and exception name)

N (name set), 38, 45
n-tuple, 79, 80, 84, 86
name

of structure (m), 21, 23–22, 38–
42, 45–47, 51, 56

name set (N), 38, 45
names (free names), 38, 39, 45, 53
NameSet (name sets), 38
Natural Semantics, 2
Neg, 57, 91
negation of booleans (not), 88, 91
negation of numbers (~), 3, 56, 88, 91
nil, 79, 87–89
non-expansive expression, 26
nonfix, 3, 6, 10, 13, 85, 88
nonfix identifiers, 6, 10, 13, 85, 88
not, 88, 91
num, 88

O

o (function composition), 88, 90
occurrence

substructure, 38
of (projection), 22, 38
of, 3

in case expression, 79, 84
in constructor binding, 10
in exception binding, 10, 55
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in exception description, 18, 68
op, 3, 6

on variable or constructor, 10, 11,
84–86

in constructor binding, 10, 85
open, 3, 10, 18, 31, 49, 64, 68, 72, 77,

81, 85
open_in, 56, 89, 92, 93
open_out, 56, 89, 92, 93
opening structures in declarations, 10,

31, 64, 85
opening structures in specifications,

18, 19, 49, 72
options, 8

first (〈 〉), 28, 47
second (〈〈 〉〉), 28

ord (of string), 56, 88, 92
Ord, 57, 92
orelse, 3, 79, 84
output, 56, 89, 93
“Output stream is closed” , 93
outstream, 87, 89, 92

P

p (see packet)
Pack (packets), 57
packet (p), 57, 60, 62, 70, 75, 76
parsing, 1, 75
pat (pattern), 8, 11, 35, 66, 80, 86
Pat (patterns), 8
patrow (pattern row), 8, 11, 34, 66,

80, 86
PatRow (pattern rows), 8
pattern, 8, 11, 35, 66, 80, 86

layered, 11, 35, 66, 86
pattern matching, 36, 55, 57, 66

with ref, 66

pattern row, 8, 11, 34, 66, 80, 86
polymorphic

functions, 28, 31, 34
references, 26, 31, 53, 88
exceptions, 26, 33, 51, 53

precedence, 8, 82
principal

environment, 36, 46
equality-, 43, 48, 52, 53
signature, 43, 48, 52, 53

printable character, 3
Prod, 57, 92
product type (*), 80, 86
program (program), 1, 75, 76
Program (programs), 75
projection (of), 22, 38

Q

qualified identifier, 4
Quot, 57, 92

R

r (record), 57, 61, 65, 66
R (right associative), 8, 83
raise, 3, 10, 29, 30, 60, 62, 75, 84
Ran (range), 22
real

the type, 87, 89
coercion, 56, 88, 91

real constant, 3, 89
realisation (ϕ), 41–43, 54
rec, 3, 10, 11, 32, 58, 64, 85
Rec (recursion operator), 58, 62, 64
record

r, 57, 61, 65, 66
as atomic expression, 10, 29, 61,

79, 84
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as atomic pattern, 11, 34, 65, 80,
86

selector (# lab), 3, 79, 84
type expression, 11, 35, 86
type (%), 23, 29, 34, 36

Record (records), 57
RecType (record types), 23
recursion (see rec, Rec, and fun)
ref

the type constructor, 87, 89
the type name, 24, 87–89
the value constructor, 55, 61, 66,

88, 89, 91
reserved words, 3, 13
respect equality (see equality)
restrictions

closure rules (see these)
syntactic (Core), 11, 36
syntactic (Modules), 17

rev, 88, 91

S

s (state), 57, 59, 61, 66, 70, 75, 76
S (structure), 23, 38, 39, 42, 45, 47,

56
SCon (special constants), 4
scon (see special constant)
scope

of constructor, 5, 22
of value variable, 5, 22
of fixity directive, 7, 13
of explicit type variable, 25, 31,

32
SE (structure environment)

static, 23–22, 38, 42, 47, 51, 87
dynamic, 57, 69, 71, 90

semantic object, 2

simple (Static), 21
simple (Dynamic), 55
compound (Core, Static), 22, 23
compound (Core, Dynamic), 57
compound (Modules, Static), 38
compound (Modules, Dynamic),

68
sentence, 2, 28, 45, 59, 70, 75
separate compilation, 15, 19, 20, 54
sequential

expression, 79, 84
declaration (Core), 10, 31, 64, 85
functor declarations, 19, 52, 73
functor specification, 19, 52
signature declaration, 17, 48, 72
specification, 18, 49, 72
structure-level declaration, 17, 46,

71
shareq (sharing equation), 15, 18, 51,

68
SharEq (sharing equations), 15, 68
sharing, 19, 20, 46, 47, 50, 51, 54

equations, 15, 18, 51, 68
specification, 18, 49
of structures, 18, 51
of types, 18, 51
multiple, 18, 51

sharing, 13, 18, 49
side-condition, 59, 70
side-effect, 70, 76
sig, 13, 17, 47, 71
Sig (signatures), 38
sigbind (signature binding), 15, 17,

48, 72
SigBind (signature bindings), 15
sigdec (signature declaration), 15, 17,

48, 72
SigDec (signature declarations), 15
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SigEnv (signature environments), 38,
68

sigexp (signature expression), 15, 17,
47, 71

SigExp (signature expressions), 15
sigid (signature identifier), 13, 17, 47,

71
SigId (signature identifiers), 13
signature (Σ), 38, 39, 41–43, 47, 48,

52–54, 69
signature, 13, 17, 48, 72
signature binding, 15, 17, 48, 72
signature declaration, 15, 17, 48, 72

in top-level declaration, 19, 53, 73
signature environment (G)

static, 38, 48, 53
dynamic, 68, 69, 72, 74

signature expression, 15, 17, 47, 71
signature identifier, 13, 17, 47, 71
signature instantiation (see instance)
signature matching, 42, 43, 45–47, 53
sin, 56, 88, 91
size (of strings), 56, 88, 91
spec (specification), 15, 18, 49, 72
Spec (specifications), 15
special constant (scon), 3, 4, 22

as atomic expression, 10, 28, 60,
84

in pattern, 11, 34, 65, 86
special value (sv), 55
specification, 15, 18, 49, 72
sqrt (square root), 56, 88, 91
Sqrt, 57, 91
state (s), 57, 59, 61, 66, 70, 75, 76
State, 57
state convention, 60, 61
static

basis, 1, 28, 38, 45, 75, 87

semantics (Core), 21
semantics (Modules), 38

std_in, 56, 89, 93
std_out, 56, 89, 93
Str (structures), 23
strbind (structure binding), 15, 17,

47, 71
StrBind (structure bindings), 15
strdec (structure-level declaration), 15,

17, 46, 71, 77
StrDec (structure-level declarations),

15
strdesc (structure description), 15, 18,

51, 73
StrDesc (structure descriptions), 15
stream (input/output), 92
StrEnv (structure environments), 23,

57
strexp (structure expression), 15, 17,

45, 70, 81
StrExp (structure expressions), 15
strid (structure identifier), 4

as structure expression, 17, 45, 70
StrId (structure identifiers), 4
string, 87, 89
string constant, 3, 89
StrName (structure names), 21
strnames (free structure names), 38
StrNameSet (structure name sets), 38
struct, 13, 17, 45, 70, 81
structure (S or (m,E)), 23, 38, 39,

42, 45, 47, 56
structure, 13, 17, 18, 46, 49, 71, 72
structure binding (strbind), 15, 17,

47, 71
structure declaration, 17, 46, 71
structure description (strdesc), 15, 18,

51, 73
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structure environment (SE)
static, 23–22, 38, 42, 47, 51, 87
dynamic, 57, 69, 71, 90

structure expression (strexp), 15, 17,
45, 70, 81

structure identifier (strid), 4
as structure expression, 17, 45, 70

structure-level declaration (strdec), 15,
17, 46, 71, 77

in top-level declaration, 19, 53,
73, 77

structure name (m, see name)
structure name set (M), 38, 45
structure realisation (ϕStr), 41
structure specification, 18, 49, 72
substructure, 38

proper, 38, 40
subtraction of numbers (-), 56, 88,

90, 92
Sum, 57, 92
SVal (special values), 55
Supp (support), 40, 41
sv (special value), 55
symbol, 4
syntax, 3, 13, 55, 68, 82

T

t (type name), 21, 24, 27, 31, 33, 36,
38–40, 42, 50, 89

T (type name set), 23, 38
TE (type environment), 23, 27, 32,

33, 42, 50, 69
then, 3, 79, 84
topdec (top-level declaration), 15, 19,

53, 73, 77
in program, 75, 76

TopDec (top-level declarations), 15

top-level declaration, 1, 15, 19, 53, 73,
77

true, 87–89
truncation of reals (floor), 56, 88, 91
tuple, 79, 80, 84, 86
tuple type, 80, 86
ty (type expression), 8, 11, 35, 55, 80,

86
Ty (type expressions), 8, 11, 55
tycon (type constructor), 4, 10, 11,

18, 22, 27, 32, 33, 35, 39, 42,
50, 51, 89

TyCon (type constructors), 4
TyEnv (type environments), 23
TyName (type names), 21
tynames (free type names), 22, 45
TyNameSet (type name sets), 23
typbind (type binding), 8, 10, 32, 55,

85
TypBind (type bindings), 8, 55
typdesc (type description), 15, 18, 50,

68
TypDesc (type descriptions), 15, 68
type (τ), 22, 24–26, 28–30, 34, 35
Type (types), 23
type, 3, 10, 18, 31, 49, 51, 55, 68, 85
type (function on special constants),

22, 28, 34
type binding, 8, 10, 32, 55, 85
type constraint (:)

in expression, 10, 29, 55, 84
in pattern, 11, 35, 55, 86

type construction, 11, 35
type constructor (tycon), 4, 10, 11,

18, 22, 27, 32, 33, 35, 39, 42,
50, 51, 89

type constructor name (see type name)
type declaration, 10, 31, 55, 85
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type description (typdesc), 15, 18, 50,
68

type environment (TE), 23, 27, 32,
33, 42, 50, 69

type explication, 41, 42, 46, 48, 53
type-explicit signature (see type ex-

plication)
type expression, 8, 11, 35, 55, 80, 86
type-expression row (tyrow), 8, 11,

36, 55, 86
type function (θ), 23, 24, 27, 32, 39,

40, 42, 50, 51, 89
type name (t), 21, 24, 27, 31, 33, 36,

38–40, 42, 50, 89
type name set, 23, 38
type realisation (ϕTy), 40
type scheme (σ), 23, 25, 26, 28, 34,

42, 50, 88, 89
type specification, 18, 49, 68
type structure (θ, CE), 23, 27, 31–33,

35, 39, 42, 49–51, 88, 89
type variable (tyvar , α), 5, 11, 21

in type expression, 11, 35, 86
equality, 5, 21, 24, 25
imperative, 5, 21, 22, 24–26, 31,

33, 36, 53
applicative, 5, 21, 22, 24–26, 31,

33
explicit, 25, 30, 31

type vector (τ (k)), 23, 24
TypeFcn (type functions), 23
TypeScheme (type schemes), 23
tyrow (type-expression row), 8, 11,

36, 55, 86
TyRow (type-expression rows), 8, 11,

55
TyStr (type structures), 23
tyvar (see type variable)

TyVar (type variables), 4, 21
tyvars (free type variables), 22
tyvarseq (type variable sequence), 8
TyVarSet, 23

U

U (explicit type variables), 23–25, 31
unit, 89
unguarded type variable, 25

V

v (value), 57, 60–63
val (function on special constants), 55,

60, 65
Val (values), 57
val, 3, 10, 18, 31, 49, 64, 72, 85
valbind (value binding), 8, 10, 25, 26,

31, 32, 64, 85
simple, 10, 32, 64, 85
recursive, 10, 32, 64, 85

Valbind (value bindings), 8
valdesc (value description), 15, 18, 50,

73
ValDesc (value descriptions), 15
value binding (valbind), 8, 10, 25, 26,

31, 32, 64, 85
simple, 10, 32, 64, 85
recursive, 10, 32, 64, 85

value constant (con)
in pattern, 11, 34, 65, 86

value constructor (con), 4
as atomic expression, 10, 28, 61,

84
scope, 5, 22

value construction
in pattern, 11, 35, 66, 86
infixed, in pattern, 11, 86
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value declaration, 10, 25, 31, 64, 85
value description (valdesc), 15, 18, 50,

73
value variable (var), 4

as atomic expression, 10, 28, 60,
84

in pattern, 11, 34, 65, 86
value specification, 18, 49, 72
var (see value variable)
Var (value variables), 4
VarEnv (variable environments), 23,

57
variable (see value variable)
variable environment (VE)

static, 23–22, 26, 31–35, 42, 50,
69, 88, 89

dynamic, 57, 58, 64–66, 69, 90
vars (set of value variables), 68, 73
VE (see variable environment)
via ϕ, 42, 54
view of a structure, 47, 51, 68, 70, 71

W

well-formed
assembly, 39, 40
functor signature, 39
signature, 39
type structure, 27

while, 3, 79, 84
wildcard pattern (_), 11, 34, 65, 86
wildcard pattern row (...), 3, 11, 34,

36, 66, 86
with, 3, 10, 85
withtype, 3, 78, 80, 85

Y

Yield, 41


