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The ML family of strict functional languages, which includes F#, OCaml, and Standard ML, evolved from the
Meta Language of the LCF theorem proving system developed by Robin Milner and his research group at the
University of Edinburgh in the 1970s. This paper focuses on the history of Standard ML, which plays a central
rôle in this family of languages, as it was the first to include the complete set of features that we now associate
with the name “ML” (i.e., polymorphic type inference, datatypes with pattern matching, modules, exceptions,
and mutable state).

Standard ML, and the ML family of languages, have had enormous influence on the world of programming
language design and theory. ML is the foremost exemplar of a functional programming language with strict
evaluation (call-by-value) and static typing. The use of parametric polymorphism in its type system, together
with the automatic inference of such types, has influenced a wide variety of modern languages (where
polymorphism is often referred to as generics). It has popularized the idea of datatypes with associated
case analysis by pattern matching. The module system of Standard ML extends the notion of type-level
parameterization to large-scale programming with the notion of parametric modules, or functors.

Standard ML also set a precedent by being a language whose design included a formal definition with an
associated metatheory of mathematical proofs (such as soundness of the type system). A formal definition
was one of the explicit goals from the beginning of the project. While some previous languages had rigorous
definitions, these definitions were not integral to the design process, and the formal part was limited to the
language syntax and possibly dynamic semantics or static semantics, but not both.

The paper covers the early history of ML, the subsequent efforts to define a standard ML language, and the
development of its major features and its formal definition. We also review the impact that the language had
on programming-language research.
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1 INTRODUCTION: WHY IS STANDARD ML IMPORTANT?
The ML family of languages started with themeta language (hence ML) of the LCF theorem proving
system developed by Robin Milner and his research group at Edinburgh University from 1973
through 1978 [Gordon et al. 1978b].1 Its design was based on experience with an earlier version of
the LCF system that Milner had worked on at Stanford University [Milner 1972] .
Here is how Milner succinctly describes ML, the LCF metalanguage, in the introduction to the

book Edinburgh LCF [Gordon et al. 1979]:
. . . ML is a general purpose programming language. It is derived in different
aspects from ISWIM, POP2 and GEDANKEN, and contains perhaps two new
features. First, it has an escape and escape trapping mechanism, well-adapted to
programming strategies which may be (in fact usually are) inapplicable to certain
goals. Second, it has a polymorphic type discipline which combines the flexibility
of programming in a typeless language with the security of compile-time type
checking (as in other languages, you may also define your own types, which may
be abstract and/or recursive); this is what ensures that a well-typed program
cannot perform faulty proofs.

This original ML was an embedded language within the interactive theorem proving system LCF,
serving as a logically-secure scripting language. Its type system enforced the logical validity of
proved theorems and it enabled the partial automation of the proof process through the definition
of proof tactics. It also served as the interactive command language of LCF.
The basic framework of the language design was inspired by Peter Landin’s ISWIM language

from the mid 1960s [1966b], which was, in turn, a sugared syntax for Church’s lambda calculus. The
ISWIM framework provided higher-order functions, which were used to express proof tactics and
their composition. To ISWIM were added a static type system that could guarantee that programs
that purport to produce theorems in the object language actually produce logically valid theorems
and an exception mechanism for working with proof tactics that could fail. ML followed ISWIM in
using strict evaluation and allowing impure features, such as assignment and exceptions.
Initially the ML language was only available to users of the LCF system, but its features soon

evoked interest in a wider community as a potentially general-purpose programming language.
Cardelli, then a graduate student at Edinburgh, decided to build a compiler for a free-standing
version of ML, initially called “ML under VMS” (also “VAX ML” in contrast to “DEC10 ML,” which
was used to refer to the LCF version), that allowed people to start using ML outside of LCF. A bit
earlier in Edinburgh, in parallel with later stages of the development of LCF, Rod Burstall, David
MacQueen, and Don Sannella designed and implemented a related functional language called
HOPE [1980]2 that shared ML’s polymorphic types but added datatypes3 to the type system.

1Milner’s LCF group initially included postdocs Malcolm Newey and Lockwood Morris, followed in 1975 by Michael Gordon
and Christopher Wadsworth, plus a number of graduate students.
2“HOPE,” despite being all-caps, is not an acronym, but refers to the name of the building where the language was born:
Hope Park Square.
3We use the term “datatypes,” instead of the often used term “algebraic data types” because it is more concise and to avoid
confusion with algebraically specified types, which are usually restricted to first-order types.
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What makes Standard ML (SML) an interesting and important programming language? For one
thing, it is an exemplar of a strict, statically typed functional language. In this rôle, it has had
a substantial influence on the design of many modern programming languages, including other
statically-typed functional languages (e.g., OCaml, F#, Haskell, and Scala). It also gave rise to a
very substantial research community and literature devoted to investigation of the foundations
of its type and module system. The focus of this research community broadened in the 1990s to
encompass the foundations of (typed) object-oriented programming languages, as represented by
the work of Luca Cardelli, John Mitchell, Kim Bruce, Benjamin Pierce, and others.

More particularly, it is worth understanding how Standard ML pioneered and integrated its most
characteristic features.

• Static typing with type inference and polymorphic types, now commonly known as the
Hindley-Milner type system.

• Datatypes with the corresponding use of pattern matching for case analysis and destructuring
over values of those types.

• A module sub-language that itself is a functional language with a substantial extension of
the basic type system of the core language.

• A type safe exception mechanism providing more flexible control structures.
• Imperative (i.e., state mutating) programming embodied in the updatable reference construct.

This complex of features evolved through the design of the language and its early formal definition
in the 1980s [Harper et al. 1987a], the first published definition [Milner and Tofte 1991; Milner et al.
1990], and were further refined in the revised definition published in 1997 [Milner et al. 1997] and
the Basis library standard [Gansner and Reppy 2004]. Theoretical foundations were investigated
and extensions and variants were explored in multiple implementations of the language. Extensions
have included first-class continuations [Harper et al. 1993b] primitives to support concurrent
programming [Reppy 1991], and polymorphic record selection [Ohori 1992].

Another contribution of Standard ML was the emphasis on safety in programming, meaning that
the behavior of all programs, including buggy programs, would be fully determined by a defined
semantics of the language. Another way of characterizing safety is that programs cannot “crash”
and fail in unpredictable ways. In practice, safety was achieved by a combination of static type
checking and a run-time system that implements a safe memory model. Earlier languages, such as
Lisp, achieved a weaker form of safety with respect to primitive data structures of the language, but
the safety guarantees could not be extended to non-primitive abstractions such as binary search
trees.
Standard ML has also driven advances in compiler technology. Standard ML implementations

have exploited new techniques such as the use of continuation passing style and A-normal forms in
intermediate languages [Appel 1992; Tarditi 1996]. Another new technology involved type-driven
compilation and optimization, as represented by the TIL compiler at CMU [Tarditi et al. 1996] and
the FLINT project at Yale [Shao 1997; Shao and Appel 1995] that translate type information in the
source language into typed intermediate languages and in extreme cases all the way to executable
code.
Finally, a distinctive attribute of Standard ML is that the language was intended to be formally

defined from the outset. Most languages (including other languages in the ML family such as OCaml
and F#) are defined by their implementation, but it was a major theme in the British programming
research culture that this was not good enough and that one should strive for mathematical rigor
in our understanding of what a programming language is and how programs behave. While there
were previous examples of languages with semi-rigorous definitions (e.g., McCarthy’s Lisp [1960]
and Algol 68 [Lindsey 1996; Mailloux et al. 1969; van Wijngaarden et al. 1969]), these efforts were
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post hoc. The formal definition of Standard ML differs from these earlier efforts in several respects;
most importantly, in that it was a primary goal of the designers of the language.

The remainder of the paper is organized as follows.We start with a discussion of the developments
that led up to the idea of defining a “Standard ML” in 1983, including a brief look at the history and
character of British programming language research, followed by a discussion of the immediate
precursors of Standard ML, namely LCF/ML, HOPE, and Cardelli ML (or “ML under VMS”).
We then give an overview of the history of design process and the personalities involved in

Section 3. This section explores the problems and solutions that arose during the evolution of the
design from 1983 through 1986; i.e., what were the key design decisions, and how were they made?
The next four sections focus on specific aspects of the language. First, Section 4 describes the

type system for the core language. Then, Section 5 focuses on the particular problems of design and
definition involved in the module system, which was, in some ways, the most novel and challenging
aspect of the language, and one which has produced a substantial research literature in its own right.
Section 6 deals with the history of how the formal Definition of Standard ML was created from
1985 through 1989, leading to the publication of the 1990 Definition [Milner et al. 1990].4 After the
completion of the Definition, and even before, reseach continued on finding better type-theoretical
foundations for the static semantics, and also toward a more feasable and ideally mechanized
metatheory (proofs of safety and soundness). These developments are covered in Section 7. An
important part of the revised definition of SML was the standardization of a library of essential
modules for serious application development and interaction with the computing environment
(operating system, networking, etc..). This effort is described in Section 8.

Section 9 concludes the paper with a discussion of several topics. These include mistakes in
the design of the language, a survey of its impact on programming language research, and its
application in the field. We also discuss the debate over whether the language design should be
fixed by the 1997 Revised Definition or be allowed to evolve. Lastly we describe the current state of
affairs.

2 BACKGROUND
In this section, we describe the technical and cultural context in which Standard ML was created.
Part of this context was formed by the culture and personalities of British programming language
research in the 1960s and 1970s. An important part is played by the set of precursor programming
languages developed at the University of Edinburgh, which directly informed and contributed to
the design of SML; namely the ML “Meta Language” of the LCF theorem proving system, the HOPE
language, and Cardelli’s dialect of ML.
ML was designed in a British culture of programming language theory and practice, and more

specifically an Edinburgh culture, that prevailed during the 1970s and 80s. There was a large and
active artificial intelligence community at Edinburgh that had a strong association with early work
on programming languages. This community was familiar with Lisp and its applications in AI, but
was also a center of logic programming and with an active Prolog user community. POP-2 [Burstall
et al. 1977] was a home-grown AI and symbolic programming language.

The British programming language scene at the time was also strongly influenced by the work of
Christopher Strachey and Peter Landin. Strachey had developed the CPL conceptual language [1963;
1966] and had collaborated with Dana Scott on the development of denotational semantics [Scott and
Strachey 1971], whose metalanguage was essentially a variety of typed lambda calculus. Strachey
also coined the term parametric polymorphism [1967] for situations where a definition or construct
is parameterized relative to a type. Landin had promoted the use of the lambda calculus as a basis for

4Hereafter we refer to the 1990 definition as the “Definition.”
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programming via the ISWIM conceptual language with an operational evaluation semantics [1964;
1966b], and as the target language for a translational semantics of Algol 60 [1965a; 1965b]. Also
worth noting is Tony Hoare’s early work on abstract data types and language design, which
was well known to the Edinburgh community. A common thread of most of the British language
research at the time was an effort to formalize the basic concepts in programming languages and use
these formalizations for analysis, proof of metalinguistic properties, and as a guide to “principled”
language design.5

2.1 LCF/ML — The Original ML Embedded in the LCF Theorem Prover
We start with a brief look at some programming languages that influenced the design of LCF/ML.

Lisp6 was the language used in the Stanford LCF project [Milner 1972] that Milner had developed
in collaboration with Richard Weyhrauch and Malcolm Newey before coming to Edinburgh, and it
was familiar to all the ML design participants as the then de facto standard language for symbolic
computing. Lisp was a functional language that could manipulate functions as data, although its
behavior as a functional language was flawed by the use of dynamic binding. It provided lists
as a general, primitive type and had an escape mechanism (catch and throw). Besides the fact
that it lacked proper function closures (true first-class functions), its main drawback as a proof
assistant metalanguage was that it was dynamically typed and had no support for abstract types.
Lisp was the language in which the Stanford LCF system was implemented and also served as its
“meta-language.” The design of ML for Edinburgh LCF was informed by Milner’s experience at
Stanford; in fact, LCF/ML was implemented by translation into Stanford Lisp code.
ISWIM7 was a conceptual language created by Landin as a general framework for future pro-

gramming languages [1966b] and as a tool for studying models of evaluation [1964]. ISWIM was
basically an applied, call-by-value lambda calculus with syntactic sugar (e.g., “where” and “let”
declaration constructs) for convenience. Landin also proposed an escaping control construct called
the J operator that was originally designed to model gotos in Algol 60 [1998]. Although ISWIM was
not statically typed, Landin used an informal, but systematic, way of describing data structures
such as the abstract syntax of ISWIM itself. This informal style of data description was a precursor
of the datatype mechanism introduced in HOPE and inherited by Standard ML.
Landin mentions a prototype implementation of ISWIM in [1966b], and he and James Morris

(at MIT) implemented an extension of ISWIM as the language PAL (Pedagogical Algorithmic
Language) [Evans, Jr. 1968a,b, 1970; Wozencraft and Evans, Jr. 1970].8
POP-2 was designed by Robin Popplestone and Burstall in the late 1960s [1977; 1968; 1968a],

following on Popplestone’s earlier POP-1 language [1968b]. Like Lisp, POP-2 was a functional
language with dynamic binding and dynamic (i.e., runtime) typing, but its syntax was in the
ALGOL-style, and its features were heavily influenced by the work of Strachey and Landin. It had
a number of notable features such as a form of function closure via partial application and an
escape mechanism (the jumpout function) inspired by Landin’s J operator that plays a rôle similar
to catch/throw in Lisp. The design of ML was also influenced by POP-2’s record structures and by
5It is interesting to note that most of the central personalities first met through an unofficial reading group formed by an
enthusiastic amateur named Mervin Pragnell, who recruited people he found reading about topics like logic at bookstores or
libraries. The group included Strachey, Landin, Rod Burstall, and Milner, and they would read about topics like combinatory
logic, category theory, and Markov algorithms at a borrowed seminar room at Birkbeck College, London. All were self-taught
amateurs, although Burstall would later get a PhD in operations research at Birmingham University. Rod Burstall was
introduced to the lambda calculus by Landin and would work for Strachey briefly before moving to Edinburgh in 1965.
Milner had a position at Swansea University before spending time at Stanford and taking a position in Edinburgh in 1973.
6Originally spelled “LISP,” for LISt Processing.
7A quasi-acronym for “If you see what I mean.”
8PAL development was continued by Arthur Evans and John M. Wozencraft at MIT.
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its sections, a simple mechanism for name-space management that provided rudimentary support
for modularity.

GEDANKEN [Reynolds 1970] was another conceptual language defined by John Reynolds based
on the principle of completeness (meaning all forms of values expressible in the language were
“first-class,” in the sense that they could be returned by functions and assigned to variables), and the
concept of references as values that could contain other values and be the targets of assignments.
GEDANKEN also included labels as first-class values, a feature that enabled unconventional control
constructs.
We now proceed to ML as it existed in the interactive LCF theorem proving system, where it

served as the metalanguage (i.e., proof scripting language) and command language. We refer to this
original version of the language as LCF/ML. The most important feature of LCF/ML was its static
type system, with (parametric) polymorphic types and automatic type inference [Milner 1978].
This type system is explored in detail in Section 4.

A major benefit of this typing algorithm was that it did not require the programmer to explicitly
specify types (with rare exceptions), but instead inferred the types implicit in the code. This feature
preserves some of the simplicity and fluidity of dynamically typed languages like Lisp and POP-2,
and was particularly important for LCF/ML’s use as a scripting and command language.

2.1.1 Control Structures. Like ISWIM, LCF/ML was at its core a call-by-value applicative language
with basic expressions composed using function application. On top of this base functional language
were added imperative features in the form of assignable variables, with a primitive assignment
operator to update their contents, iterative control structures (loops), and failure (i.e., exception)
raising and trapping constructs.

The language offered an interesting combined form for conditionals and loops, where either the
then or else keywords of a standard conditional expression could be replaced by loop to turn the
conditional into an iterative statement. These conditional/loop expressions could also be nested. As
an example, here is the code for the gcd function:

let gcd ( x , y ) =
letref x , y = x , y
in if x > y loop x : = x − y

if x < y loop y : = y − x

else x ; ;

In this example, control returns to the top of the whole conditional after executing either of the
loop branches. The expected else keyword following the first loop can be elided, as it is here. This
example also illustrates the letref declaration form for introducing assignable variables.

2.1.2 Polymorphism and Assignment. A notable complication in the type inference algorithm for
ML arose from the interaction between polymorphic types and assignable variables introduced by
letref declarations. It was soon discovered that without some sort of restriction on polymorphic
typing of such variables, the type system would be unsound. One rather ad hoc and unintuitive
solution was devised for LCF/ML, but the search for better solutions continued for many years as
described in some detail in Section 4.4.

2.1.3 Failure and Failure Trapping. Another feature of LCF/ML that was motivated by the needs
of programming proof tactics was an exception or failure mechanism. Failures were identified by
tokens, which were strings of characters enclosed in backquotes. To signal failure, one used the
syntax “failwith t ,” which would signal a failure/exception labeled by the token t , and failures could
be trapped using the syntax “e1 ? e2,” where a failure in e1 would result in the expression e2 being
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evaluated. One could also specify a list of failure tokens to trap using the syntax “e1 ?? tokens e2,”
where tokens was a space-separated sequence of strings enclosed in double backquotes. A novel
aspect of the failure mechanism was the iterative form of failure trapping (using “!” and “ !! ” instead
of “?” and “??”) These forms would repeat execution of the expression e1 after the handler e2 had
run, until e1 evaluated without failure. Proof tactics can fail for various reasons, and failure trapping
is useful for defining higher-order tactics (tacticals) that can detect failures and try an alternate
tactic (or the same tactic after some adjustment).

2.1.4 Types and Type Operators. The basic types of LCF/ML are int, bool, token (i.e., string), and a
trivial type denoted by “ .” that has a single element, the null-tuple “ () .” There are also built-in types
term, form, type, and thm representing the terms, formulae, types, and theorems of the PPLAMBDA
logic (the object language of the LCF system). The built-in type constructors include binary products
“ty1 # ty2,” binary disjoint sums “ty1 + ty2,” function types “ty1 −> ty2,” and list types “ty list.”

The list type constructor could be considered a predefined abstract type except that special
syntax was provided for list expressions.
Another aspect of the type system of LCF/ML was the ability to define new types. These could

be either simple abbreviations for type expressions composed of existing types and type operators,
or they could be new abstract types, defined using the abstype declaration keyword. Abstract
type definitions specified a hidden concrete representation type and a set of exported values and
functions that provided an interface for creating and manipulating abstract values. Abstract types
could be parameterized and they could be recursive (i.e., an abstract type could appear in its own
concrete representation). Abstract types played an important rôle in the LCF theorem proving
system, where thm was an abstract type and the functions it provided for building elements of the
type corresponded to valid inference rules in the logic of LCF, thus ensuring by construction that a
value of type thm must be proveable. As noted by Gordon et al. [1978b], the abstype construct is
similar to the notion of “clusters” in the CLU language [Liskov et al. 1981].

2.2 HOPE
The HOPE programming language [Burstall et al. 1980] was developed by Rod Burstall’s research
group in the School of Artificial Intelligence at Edinburgh just after LCF/ML from 1977 to 1980.
This language was inspired by the simple first-order equational language that was the subject of
Burstall and Darlington’s work on program transformation [1977]. Burstall had designed a toy
language called NPL [1977] that added a simple form of datatype [1969] and pattern matching
to the earlier equational language. David MacQueen and Burstall (later joined by Don Sannella),
added LCF/ML’s polymorphic types and first-class functions (lambda abstractions) to create the
HOPE language. From the perspective of the later evolution of ML, the notable features of HOPE
were its datatypes, pattern matching over datatypes, clausal (or equational) function definitions,
and the combination of polymorphic type inference with overloading of identifiers.

2.3 Cardelli ML
We start by giving a brief history of Cardelli’s dialect of ML, also known as “ML under VMS” (the
title of the manual), before considering the language innovations it introduced [Cardelli 1982d].9
Cardelli began working on his ML compiler sometime in 1980. The compiler was developed

on the Edinburgh Department of Computer Science VAX/VMS system, so Cardelli sometimes
informally called his version “VAX ML” to distinguish it from LCF/ML, which was also known

9Note that Cardelli was building his VAX ML at the same time as he was doing research for his PhD thesis [Cardelli 1982a].
He also developed his own text formatting software, inspired by Scribe, that he used to produce his thesis and the compiler
documentation, and a simulation of the solar system!
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as “DEC-10 ML,” because it ran under Stanford Lisp on the DEC-10/TOPS-10 mainframe [Cardelli
1981].10

Cardelli’s preferred working language at the time was Pascal, so both the compiler and the
runtime system were written in Pascal, using Pascal’s unsafe union type to do coercions for
low-level programming (e.g., for the garbage collector).11 Cardelli’s ML compiler for VAX/VMS
generated VAX machine code, and was much faster than the LCF/ML (DEC-10) version, which
translated ML to Lisp code, which was interpreted by the host Lisp system. The compiler was
working and was made available to users in the summer of 1981 (version 12-6-81, distributed on
June 12, 1981), although a working garbage collector was not added until version 13-10-81.

The earliest surviving documents relating to the compiler date to late 1980: “The ML Abstract
Machine,” a description of the abstract machine AM [Cardelli 1980a] (which would develop into the
FAM [Cardelli 1983a]), and “A Module Exchange Format,” a description of an external string format
for exporting ML runtime data structures [Cardelli 1980b]. There is a README file titled “Edinburgh
ML” from March 1982 that describes how to install and run the system [Cardelli 1982b], and a
partial manual titled “ML under VMS” providing a tutorial introduction to the language [Cardelli
1982d], corresponding to Section 2.1 of “Edinburgh ML” [Gordon et al. 1979].

In early 1982, Nobuo Saito, then a postdoc at CMU, ported Cardelli’s ML compiler to Unix, using
Berkeley Pascal [1982]. In April 1982, Cardelli completed his PhD at Edinburgh [1982a] and moved
to the Computing Science Research Center (the birthplace of Unix) at Bell Labs, and immediately
began his own Unix port, which was available for distribution in August 1982. The runtime system
for the Unix port was rewritten in C, but most of the compiler itself remained in Pascal. The first
edition of the Polymorphism newsletter12 contained a list of known distribution sites [Cardelli
1982c]. At that time, there were at least 23 sites spread around the world, several using the new Unix
port. The Unix port had three releases during 1982 (13-8-82, 24-8-82, and 5-11-82), accompanied
with some shifts in language design and system features, notably a new type checker for ref types
and an early version of file I/O primitives. The manuals for these releases were all titled “ML under
Unix,” instead of “ML under VMS.”
The next major milestone was the first Standard ML meeting in Edinburgh in April 1983 (see

Section 3.1). Cardelli agreed to a request from Milner to suspend work on the manual for his ML
dialect (now titled “ML under Unix”) pending developments in response to Milner’s initial proposal
for Standard ML [Milner 1983d]. Following the meeting Cardelli began to change his compiler to
include new features of the emerging Standard ML design, resulting in Pose 2 (August 1983),13
Pose 3 (November 1983), and finally Pose 4 (April 1984). This last version is described in the paper
“Compiling a Functional Language” [Cardelli 1984a].

The first description of the Cardelli’s version of ML was a file mlchanges.doc [Cardelli 1981] that
was part of his system distribution. This file describes the language by listing the changes made
relative to LCF/ML (DEC-10 ML). The changes include a number of minor notational shifts. For
instance, LCF/ML used “ .” (period) for list cons, while Cardelli ML initially used “_,” later shifting
to the notation “ :: ” used in POP-2 [Burstall and Popplestone 1968]. The trivial type (called “unit”
in Standard ML) was denoted by “ .” in LCF/ML and by “triv” in Cardelli ML. A number of features

10Cardelli sometimes referred to these implementations as two varieties of “Edinburgh ML,” but that name was used later
for the self-bootstrapping port of Cardelli ML implemented by Kevin Mitchell and Alan Mycroft.
11Since the entire system was written in Pascal, there was no sharp distinction between the compiler and the runtime,
which was simply the part of the system responsible for executing the abstract machine instructions (FAM code).
12Polymorphism – The ML/LCF/Hope Newsletter was self published by Cardelli and MacQueen at Bell Laboratories and
distributed by physical mail to interested parties. Electronic copies are available at either http://lucacardelli.name/indexPapers.
html or http://sml-family.org/polymorphism.
13Cardelli called his compiler versions “Poses” adopting a terminology from dance.
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of LCF/ML were omitted from Cardelli ML, e.g., the “do” operator, sections, and the “!” and “ !! ”
looping failure traps [Gordon et al. 1979, Chapter 2].

But the really interesting changes in Cardelli ML involved new labelled record and union types,
the ref type for mutable values, declaration combinators for building compound declarations, and
modules. We describe these in the following subsections.

2.3.1 Labelled Records and Unions. Cardelli was of course familiar with the conventional record
construct provided in languages such as Pascal [Jensen and Wirth 1978, Chapter 7]. But inspired by
Gordon Plotkin’s lectures on domain theory, Cardelli looked for a purer and more abstract notion,
where records and discriminated union types were an expression of pure structure, representing
themselves without the need of being declared and named. The notation for records used decorated
parentheses:

( | a1 = e1 ; . . . ; an = en | ) : ( | a1 : t1 ; . . . ; an : tn | )

where ei is an expression of type ti . The order of the labelled fields in a record type did not matter
— any permutation represented the same type.

Accessing the value of a field of a record was done using the conventional dot notation: r .a,
where r is a record and a is a label. Records could also be deconstructed in declarations and function
arguments by pattern-matching with a record varstruct (pattern), as in the declaration:

let ( | a=x ; b=y | ) = r

From the beginning, Cardelli included an abbreviation feature for record patterns where a field
name could double as a default field variable, so

let ( | a ; b | ) = r

would implicitly introduce and bind variables named a and b to the respective field values in r. All
these features of the VAX ML record construct eventually carried over to Standard ML, but with a
change in the bracket notation to use {...} .

Labelled unions were expressed as follows, using decorated square brackets:

[ | a1 = e1 | ] : [ | a1 : t1 ; . . . ; an : tn | ]

The union type to which a given variant expression belonged had to be determined by the context
or given explicitly by a type ascription. Variant varstructs could be used in varstructs for declaration
and argument bindings, with their own defaulting abbreviation where a [| a |] stood for [| a = ()|] ,
both in varstructs and expressions, which supported an enumeration type style.14 A case expression
based on matching variant varstructs was used to discriminate on and deconstruct variant values,
with the syntax

case e

of [ | a1 = v1 . e1 ;
· · ·

an = vn . en
| ]

where e is of type [|a1: t1; ... ; an : tn |] and the vi have type ti in ei .

14Initially, the record and variant abbreviation conventions were also applied to types, but this was not found useful and
was quickly dropped.
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2.3.2 The ref Type. In LCF/ML, mutable variables could be declared using the letref declaration.
Cardelli replaced this declaration form with the ref type operator with its interface consisting of
the operations ref, :=, and ! . This approach was carried over unchanged into Standard ML, though
the issue of how ref behaved relative to polymorphism took many years to resolve, as is discussed
below in Section 4.4.

2.3.3 Declaration Combinators. Another innovation in Cardelli ML was a set of (more or less)
independent and orthogonal declaration combinators for building compound declarations [Cardelli
1982d, Section 1.2]. These combinatorsare

• enc, for sequential composition, equivalent to nesting let-bindings: “d1 enc d2” yields the
bindings of d1 augmented with or overridden by the bindings of d2.

• and, for simultaneous or parallel composition, usually used with recursion.
• ins, for localized declarations: “d1 ins d2” yields the bindings of d2, which are evaluated in
an environment containing the bindings of d1.

• with, a kind of hybrid providing the effect of enc for type bindings and ins for value bindings;
usually used with the special “<=>” type declaration to implement abstract types.

• rec, for recursion
There were also reverse forms of enc and ins called ext and own for use in where expressions, thus
“let d1 enc d2 in e” is equivalent to “e where d2 ext d1.”

This “algebra” of declarations (possibly inspired by ideas in Robert Milne’s PhD thesis [1974])
was interesting, but in programming, the combinators would normally be used in a few limited
patterns that did not take advantage of the generality of the idea. Indeed, certain combinations
seemed redundant or problematic, such as “rec rec d,” or “rec d1 ins d2” (rec syntactically binds
weaker than the infix combinators).

Cardelli factored the abstype and absrectype of LCF/ML using with (and possibly rec) in combina-
tion with a special type declaration form “tname <=> texp” that produced an opaque type binding15
of tname to the type expression texp together with value bindings of two isomorphism functions:

abstname : texp −> tname

reptname : tname −> texp

A compound declaration “tname <=> texp with decl” would compose the type binding of tname
with decl while localizing the bindings of abstname and reptname to decl. Thus with acted like
enc at the type level and ins at the value level. This mechanism was, in principle, more general
than abstype/absrectype in LCF/ML, in that the declaration d1 in d1 with d2 was arbitrary and not
restricted to a possibly recursive simultaneous set of isomorphism (<=>) type bindings, but it was
not clear how to exploit increased generality.

In the end, the and combinator was used in StandardML, but at the level of value and type bindings,
not declarations (just as it was used in LCF/ML), the ins combinator became the “local d in e end”
declaration form, the rec combinator was adopted, but at the level of bindings,16 and the <=>, with
combination were replaced by a variant of the old abstype declaration, but using the datatype form
for the type part and restricting the scope of the associated data constructors.
In later versions, starting with “ML under Unix,” Pose 2 [Cardelli 1983b], another declaration

form using the export keyword was added. A declaration of the form

export exportlist from decl end

15Meaning that tname was not equivalent to texp.
16Arguably, the syntax was still too general, since it allowed an arbitrary number of rec annotations to be applied to a
binding.
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produced the bindings of decl, but restricted to the type and value names listed in the exportlist.
Exported type names could be specified as abstract (in ML under Unix, Pose 4) meaning that
constructors associated with the type were not exported. Thus both local and abstype declarations
could be translated into export declarations.

2.3.4 Modules. LCF/ML had no module system; the closest approximation was a section directive
that could delimit scope in the interactive top-level. Since Cardelli ML aimed to support general
purpose programming, Cardelli provided a basic module system. A module declaration was a named
collection of declarations. Modules were independent of the environment in the interactive system,
and explicit import declarations were required to access the contents of other modules (other
than the standard library of primitive types and operations, which was pervasively accessible, i.e.,
implicitly imported into every module). Cardelli called this feature a module hierarchy. Compiling
a module definition produced an external file that could be loaded into the interactive system or
accessed by other modules using the import declaration. Importing (loading) a module multiple
times would only create one copy, so two modules B and C that both imported a module A would
share a single copy of A. The export declaration was commonly used to restrict the interface
provided by a module. There was no way to separately specify interfaces (thus no equivalent of
signatures in Standard ML).

3 AN OVERVIEW OF THE HISTORY OF STANDARD ML
In this section, we survey the history of the design and evolution of Standard ML (which we will
free to abbreviate as SML from here on). This section provides a historical framework for the more
technically focused sections that follow.

3.1 Early Meetings
3.1.1 November 1982. By the fall of 1982, interest in the functional-programming systems developed
in Edinburgh (LCF/ML, Cardelli ML, and HOPE) had spread through the British programming
research community and beyond (to INRIA in France in particular). This interest led to the convening
of a meeting titled “ML, LCF, and HOPE” at the Rutherford Appleton Laboratory (RAL) in mid-
November of 1982 under the sponsorship of the SERC17 Software Technology Initiative, chaired
by R. W. Witty [Wadsworth 1983]. The 20 attendees included a large contingent from Edinburgh
(Robin Milner, Rod Burstall, etc.) and representatives from RAL, Oxford, Imperial College, and
Manchester.
The discussions at this meeting focused on strategy for further development of ML, LCF, and

HOPE, including new implementations and ports of existing implementations. Because there were
already multiple implementations (forks) of both ML (the LCF/ML embedded metalanguage and
Cardelli ML), LCF (new implementations with variations at Cambridge/INRIA and Chalmers), and
HOPE (the original POP-2 implementation, MacQueen’s Lisp port, and work on compilers for the
Alice machine in Darlington’s group at Imperial College), there was concern about duplication and
dispersion of effort among different design and implementation forks.
The question of merging the ML and HOPE languages to reduce duplication came up, and,

interestingly, Milner’s response was reported by Chistopher Wadsworth as follows:
There was some discussion about the merits of propagating two languages (HOPE
and ML). R. Milner summarized the general view that HOPE and ML represent
two points in a spectrum of possible (typed) functional languages. Differing aims
had led to different compromises in the design of the two languages and both

17Science and Engineering Research Council, the British equivalent of the National Science Foundation in the US.
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should continue to be developed. The ultimate functional language could not be
envisaged yet — variety and experimentation, rather than standardization, were
needed at this stage.

Thus it is clear that Milner was not contemplating a merged language at this point. Bernard Sufrin
(who attended the RAL meeting), reports, however, that he had further discussions with Milner
at another meeting (possibly in York) that fall where he urged Milner to consider a new, unified
version of ML that might subsume Cardelli’s dialect and even HOPE. Milner refers to Sufrin’s
suggestion in the second draft proposal [1983c].
The notes for the November 1982 meeting, along with a response from Michael Gordon and

Larry Paulson (Cambridge University), who were not able to attend the meeting, were published in
Polymorphism [Wadsworth 1983].

3.1.2 April 1983. By April 1983, Milner had written a manuscript proposal for a new language
that he called “Standard ML” [1983d].18 Milner emphasised that he was thinking of a conservative
revision of the original ML design that was not intended to introduce novel features, but rather
to consolidate ideas that had developed around ML. The language was presented as a minimal
“Bare ML” that was then fleshed out with standard abbreviations and alternate forms that could be
defined in terms of Bare ML. In the Bare ML language, notable changes to LCF/ML included the
introduction of HOPE-style algebraic datatypes, pattern matching over datatype constructors, and
clausal (or equational) function definitions.

Cardelli’s labeled records were not adopted, leaving the binary product types and pairing operator
of LCF/ML in place. Similarly, Cardelli’s labeled variants were regarded as redundant given that
datatypes provided tagged unions, with the datatype constructors serving as tags, and datatypes
could also be used to define the equivalent of LCF/ML’s binary tagged union operator on types.

The elaborate conditional/iterative control constructs of LCF/ML were dropped and case expres-
sions and simple conditionals were derived using application of a clausal function. Similarly, the
elaborate conditional/iterative failure trapping construct was replaced by simple escape and trap

expression forms, with escape transmitting a token (that is, a string) as before.
Serendipitously, it happened that in the Spring of 1983 there was a significant group of PL

researchers gathered in Edinburgh,19 who met in the parlor of Milner’s home for three days in
April to discuss Milner’s proposal.

3.1.3 June 1983. Following the meetings at Milner’s home, there was a period of further discussion,
mostly via the post,20 and the circle of discussion widened somewhat to include Gérard Huet at
INRIA and Stefan Sokolowski at the Polish Academy of Science in Gdansk.

The discussions at the meeting and after resulted in Milner’s producing and distributing a longer,
revised version of his proposal in June [1983a; 1983c], which was followed by further discussion.
This second proposal added equality types and equality polymorphism to the language, using a
restricted form of bound type variables.
Further discussion lead to the first typewritten design proposal in November of 1983; the first

two drafts had been handwritten. The introduction of this draft notes that the issues of input/output

18The name “Standard ML” was not viewed as permanent, and it did not imply a formal standardization process, but simply
an attempt to re-unify the dialects that had come to exist, namely LCF/ML and Cardelli ML. The fact that the name stuck
was unfortunate, since in the end a new language was produced, and there was no sanctioned “standard.”
19Participating: Rod Burstall, Luca Cardelli (Bell Labs), Guy Cousineau (INRIA), Michael Gordon (Cambridge), David
MacQueen (Bell Labs), Robin Milner, Kevin Mitchell, Brian Monahan, Alan Mycroft, Larry Paulson (Cambridge), David
Rydeheard, Don Sannella, David Schmidt, John Scott; unless otherwise noted, all from Edinburgh.
20None of the institutions involved were connected to the Arpanet, and email was not yet a routine means of communication.
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and separate compilation were contentious and, thus, the proposal focuses on defining a “core”
language.

3.1.4 June 1984. In June 1984, Milner organized a slightly more formal secondmeeting in Edinburgh
to refine and extended the design. This second meeting was more planned than the first one, with
Milner distributing an invitation and timetable [1984a] in advance of the meeting. A meeting report
was written by MacQueen and Milner, and published in the Polymorphism newsletter the following
January [1985]. The meeting also resulted in the publication of two papers — one on the Core
language [Milner 1984b] and a second on the module system [MacQueen 1984] — at the 1984 Lisp
and Functional Programming Conference in Austin, Texas.

3.1.5 May 1985. The third design meeting was a three-day affair held in Edinburgh in May 1985.
This meeting was more elaborate, with a number of position papers being presented [Milner 1985b].
A meeting report was prepared by Robert Harper [1985].

A major topic of discussion at the third meeting, which consumed the whole first day, was
a proposal by MacQueen for a Standard ML module system. This initial proposal was based on
MacQueen’s earlier conceptual work on a module system for HOPE [1981]. The design was inspired
partly by work on parametric algebraic specifications, particularly Burstall and Goguen’s Clear
specification language [1977], and partly by research in type theory and type-based logics (e.g.,
by Per Martin Löf [1982; 1984]). The main elements of the design were signatures (interface
specifications), modules (implementations of interfaces), and parametric modules, called functors.
Modules could be nested inside other modules and functors.
The design issues involved in the module system proved to be surprisingly subtle, and much

discussion went on during the period from 1984 through 1988 on the details of the design and the
methods for its formal definition. Major issues were coherence (sharing) among functor parameters,
the nature of signature matching (whether it was coercive or not), and the static identity of modules
(i.e., are module declarations generative). These issues are discussed in detail in Section 5.

While modules were the dominant topic of discussion at this meeting, an afternoon was given
over to discussing other topics. These included early proposals for some form of labeled tuples
(what would eventually become the record type of SML), and various syntax issues.

The 1985 meeting was also the first meeting that did not include participation from the FORMEL
group at INRIA. By this time, they had decided to develop a separate dialect of ML that would be
free from the need to adhere to a standard. This version of ML became the Caml (and eventually
OCaml) branch of the language; the first release was in 1987 and compiled down to the virtual
machine of the LeLisp system (also developed at INRIA) [OCaml-history 2019].

3.2 The Formal Definition
Up to this point, the design proposals and discussion were carried out on an informal basis, with
considerations of formal semantics in the background. But with the arrival of Robert Harper in
Edinburgh in the Summer of 1985, work began on the semantics of the language and subsequent
design work was generally integrated with that effort.
The development of the formal definition of Standard ML began after the May 1985 meeting.

It was primarily developed by Milner, Mads Tofte, and Harper, with input from Dave MacQueen
and other participants in the design process, including Burstall, Kevin Mitchell, Alan Mycroft,
Lawrence Paulson, Don Sannella, John Scott, and Christopher Wadsworth. By April 1985, Milner
had produced a third draft of “The Dynamic Operational Semantics of Standard ML” [1985a].
This was an evaluation semantics (“big step”) in the same operational style eventually used in
the Definition. Don Sannella had also developed a denotational semantics of the module system
[Sannella 1985], which revealed some issues and ambiguities in the informal description [Milner et al.
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1990, Appendix E]. Harper wrote the first version of a static semantics in the summer of 1985, but
the first published version of the static semantics appeared in 1987, including the characterization
of principal signatures for modules [Harper et al. 1987b]. The development of the semantics was
undertaken as Tofte’s Ph.D. dissertation research [1988], which examined many issues in the
language itself and in the semantic methodology needed to define it. Milner and Tofte extensively
developed these ideas into The Definition of Standard ML, which was published in 1990 [Milner
et al. 1990]. A companion volume, Commentary on Standard ML [Milner and Tofte 1991], was
published shortly thereafter by Milner and Tofte. The Commentary provided an analysis of design
alternatives and fundamental properties of the definition, particularly the static semantics. These
two volumes served as the foundation for some subsequent implementations, most notably the
ML Kit Compiler [Birkedal et al. 1993], and spurred a large body of research on the language’s
metatheory and on the methodology of formal definition. These topics are explored further in
Section 6 and Section 7.

3.3 Standard ML Evolution
By the early 1990s, a great deal of work had gone into the design, formal definition, and imple-
mentation of Standard ML, and substantial applications had been built (including Standard ML
compilers written in Standard ML). Some technical bugs, gaps, and ambiguities had been discovered
in the Definition, and some problems or weaknesses in the design itself had become evident. Thus
people in the community were beginning to feel that at least a minor revision was warranted to
correct acknowledged mistakes.

3.3.1 ML 2000. In January 1992, at the POPL conference in Albuquerque, New Mexico, a small
group consisting of Robert Harper, John Mitchell, Dave MacQueen, Luca Cardelli, and John Reppy21
had lunch together and began to discuss whether the time was right to think about a next generation
of ML, based on the accumulated experience with design, implementation, use, and theoretical
developments related to ML (both SML and Caml).

The idea was more ambitious than to just make minor corrections or modifications to Standard
ML. The group was open to a more radical redesign that might even re-integrate the Caml fork, by
trying for a language design that would be seen as an improvement over both Standard ML and
Caml.
This initial meeting lead to a series of meetings (roughly two per year, usually connected with

either POPL, ICFP, or IFIP Working Group 2.8, but with a couple ad hoc meetings at a cabin at Lake
Tahoe) with a gradually expanding group of interested researchers, including Xavier Leroy and
Didier Rémy from the Caml community.

A number of relatively minor technical issues were discussed, but it turned out that the central
question was whether ML would be improved by adding object-oriented features. At this time,
Cardelli and Mitchell were both involved in developing type-theoretic foundations for object-
oriented languages, and Didier Rémy and his student Jérôme Vouillon were beginning work that
would result in Objective Caml (first released in 1996) [OCaml-history 2019]. Kathleen Fisher
and Reppy would also explore the idea extending ML with object-oriented features in the Moby
language [1999; 2002]. But another point of view, espoused by Harper and MacQueen among others,
was that the ideas underlying object-oriented programming were both excessively complex and
also unsound from a methodological point of view [MacQueen 2002].
The dispute between the advocates and the opponents of object-oriented features was never

resolved, leading to a failure of the group to produce a new language design. Jon Riecke, however,

21The exact cast of characters is uncertain — memories differ.
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was able to write up a report on the ideas on which there was general agreement [ML2000 Working
Group 1999]. In this report, ML2000 was envisioned as having the following properties:

• A module system based on SML modules, but with a well-defined semantics of separate
compilation and support for higher-order functors. There were, however, competing views
on how to realize the latter mechanism, with some arguing for the approach taken in SM-
L/NJ [MacQueen and Tofte 1994], whereas others favored the “applicative functor” approach
taken in OCaml [Leroy 1995].

• Support for object-oriented programming, including a notion of object types and a subtyping
relation. Type specifications in a signature could specify subtyping relationships (i.e., that an
abstract exported type was a subtype of some other type).

• Concurrency would be included using a design based on the event type constructor and
supporting combinators found in Concurrent ML [Reppy 1999]. There was also an awareness
that the semantics of ML2000 would have to take into account relaxed memory-consistency
models; an idea that has become standard in recent years.

• Instead of the single extensible datatype (exn) in SML, there would be a general mechanism
for defining “open” datatypes based on a design by Reppy and Riecke [1996].

• In addition, there were various minor changes, such as adopting modulo arithmetic and
eliminating polymorphic (or generic) equality.

3.3.2 The Revised Definition (Standard ML ’97). Within the core SML community, the ML 2000
discussions did bear concrete fruit.
By the mid 1990s, significant experience with the Standard ML design had been accumulated

through the work on the formal definition, multiple implementation efforts, and the development
of reasonably large software systems written in SML. A core group of designers, Milner, Tofte,
Harper, and MacQueen,22 felt it would be valuable to attempt a modest revision of the language
design, leading to the creation of Standard ML ’97 and the publication of the Definition of Stan-
dard ML (Revised). This revision simplified the Core type system in significant ways, notably by
introducing the value restriction rule to control the interaction of polymorphism and mutable data,
eliminating the need for “imperative” type variables that were used to express a weakened form of
polymorphism [Wright 1995].

It also both simplified and enriched the module system. Signatures were made more expressive
by introducing definitional (or translucent) type specifications, which had been implemented
in Standard ML of New Jersey in 1993 (Version 0.93) and proposed in papers by Harper and
Lillibridge [1994] and Leroy [1994] at POPL 1994. Opaque signature matching (using the delimiter
“:>”) was added, and the notion of structure sharing was weakened to implied type sharing. These
issues will be discussed more fully below in Section 5.
Along with changes to the language, the Basis Library was substantially revised and expanded

to match common practice. New built-in types were added for characters, unsigned integers, and
multiple precisions of numeric types were supported. These changes required modifications to the
syntax of the language, as well as extending the overloading mechanism to numeric literals.

The discussion of these revisions took place over a period of about a year (1995-1996) and Tofte
carried out the detailed revision of the semantic rules. The revised Definition [Milner et al. 1997]
was published in 1997 — hence the revised language is commonly known as SML ’97.

22Brought together in Cambridge in the fall of 1995 by the Semantics of Computation program at the Newton Institute.
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4 THE SML TYPE SYSTEM
This section covers the background, design, theory, and implementation(s) of the ML type system.
We start with a look at the early history of the concept of types as it arose in research in the
foundations of mathematics. We then consider the issue of implicit typing and type inference, and
the related notion of parametric polymorphism.
The polymorphic type inference system used in ML (and related languages) is owed to Robin

Milner, who independently rediscovered the ideas that had been previously explored by logicians
(Haskell Curry, Max Newman, and Roger Hindley). But Robin Milner added the essential idea of
let-polymorphism, or introducing polymorphism at local declarations, along with his now-classic
“Algorithm W” for performing type inference [1978].

The two theoretical properties that the type system strives to achieve are soundness and princi-
pality. Soundness roughly means that a statically well-typed program will not fail with a certain
class of errors called type errors. Principality roughly means that the type inferred for a program or
expression is as general as possible – any other valid typing would be a specialization of this most
general type. We also discuss the interaction of polymorphism and effects. Handling effects in a
sound fashion disrupts the theoretical simplicity of the type system and conflicts with principality.
Pragmatically the problem of effects was initially addressed by complications in the type system
such as imperative type variables. Later, in the Definition (Revised), the decision was made to simplify
the type system by introducing the value restriction, which is described below.

We then move on to consider the structure of types (products, sums, etc.). Here the major inno-
vation in ML is the notion of datatypes. These were implicit in Peter Landin’s informal conventions
for defining data types in ISWIM [1966a; 1966b] and were developed further by Rod Burstall in his
language NPL [1977], and finally in a fully developed form in HOPE [Burstall et al. 1980].

Finally we address some implementation issues and techniques related to the type system.

4.1 Early History of Type Theory
The development of the theory of types that eventually led to the Standard ML type system goes
back more than a hundred years. It is covered in considerable detail and depth in references such as
“A Modern Perspective on Type Theory, From its Origins until Today” [Kamareddine et al. 2004],
“Lambda-Calculus and Combinators in the 20th Century” [Cardone, Jr. and Hindley 2009], and
“The Logic of Church and Curry” [Seldin 2009].23 The following is a summary of some of the most
relevant ideas from this history.
In the late 19th century, Georg Cantor, Gottlob Frege, Giuseppe Peano, and others endeavored

to provide rigorous logical foundations for mathematics, particularly arithmetic, but also real
analysis (with Richard Dedekind and Augustin-Louis Cauchy). Cantor created his set theory [1874]
in pursuit of a proof of the existence of transcendental (irrational) real numbers. Frege devised
a logical calculus, called Begriffsschrift [1879], and used it to construct a formal foundation for
arithmetic in “Grundgesetze der Arithmetik” [1893]. And, of course, Peano developed his well-
known axioms for arithmetic [1889] and invented something like the modern notation used in
logic.

In 1901, Bertrand Russell discovered a paradox in Frege’s logic [1967]. This paradox (and others)
threatened the program to build logical foundations for mathematics. Russell, with the collaboration
of Alfred North Whitehead, launched an effort to repair the fault that led to the publication of the
three volumes of Principia Mathematica between 1910 and 1913 [1910,1912,1913]. Their approach
to avoiding the paradoxes was to introduce a ramified theory of types into a formalism derived
from Frege’s Begriffsschrift. This formalism was based, like Frege’s, on the idea of propositional

23For general introductions to typed λ-calculus, see texts by Hindley [1997] or Henk Barendregt [1992].
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functions rather than sets. The types characterized the arguments of such propositional functions:
their number and “levels” (what we would today call their “order”). The ramification took the
form of orders (natural numbers) that specified the universes quantified over in the definition of
a propositional function: order 0 if there was no (universal) quantification, order 1 if there were
quantifiers over “individuals” (basic values like numbers), 2 for quantifiers over order 1 propositional
functions, and so on. These notions of types and orders were treated somewhat informally, and in
fact there was no definition of or notation for types, nor for what it meant for a term to have a
type. There was only an incomplete definition of when two terms “have the same type.”24

This ramified theory of types was both complex and not fully defined in Principia Mathematica.
During the 1920s, F.P. Ramsey [1926], and David Hilbert and Wilhelm Ackermann [1928] showed
that the complexity of ramified types was not actually necessary to avoid the paradoxes and that
a simple type theory would suffice [Carnap 1929]. Their versions of a simple theory of types was
defined in terms of propositional functions, where the types characterized only the arguments of
functions, since all such functions returned propositions (or, roughly, Boolean values). In 1940,
Alonzo Church published his paper “A formulation of the Simple Theory of Types” [1940]. This
paper still focused on using types (in conjunction with an applied λ-calculus enriched with logical
operators like “NOT,” “AND,” and universal quantification) to express a logic, but it supported a
more general notion of functions that could return values other than propositions (or truth values).
Church’s type theory became the standard in the following decades.25
Meanwhile, in the 1930s Haskell Curry was working on Combinatory Logic, another “logical”

calculus [Schönfinkel 1924] [Curry 1930, 1932]. Curry introduced what he called functionality in
Combinatory Logic, which consisted essentially of types for combinators and combinations [1934].
Although his notation was archaic and types were not notationally distinguished from general
combinators, his notion of functionality for combinators amounts to what we now call parametric
polymorphic types. For instance, his axiom for the typing of the K combinator (corresponding to
the λ-expression λx .λy.x ) is

(x,y)Fy(Fxy)K (FK)

where the notation Fαβ translates into α → β (assuming α and β are terms representing types),
and Fαβx represents the typing assertion x : α → β . So the above axiom for typing K translates
into the modern form

K : ∀(x,y) . y → (x → y) (FK)

Another important point about Curry’s type theory is evident here: a function (e.g., K ) can simulta-
neously have many different types. The meaning of a typing assertion such as Fxyz (i.e., z : x → y)
is given by the following axiom:

(x,y, z)(Fxyz ⇒ (u)(xu ⇒ y(zu))) (Axiom F)

or in modern notation:

∀(x,y, z)(z : x → y ⇒ (∀u)(u : x ⇒ zu : y)) (Axiom F)

in other words, z : x → y means that z maps members of type x to members of type y. Thus having
a type is a property of a term that does not exclude that term having other types; i.e.; the type is
not intrinsic to the term. This approach is called Curry-style typing in contrast with the types in

24Modern reformulations of the paradoxes and the theory of ramified types are given by Thierry Coquand [2018] and
Fairouz Kamareddine [2004].
25But Church’s notation for types did not survive. For instance, in his notation, the type of functions with domain α and
range β was (βα ), which we now would express as α → β .
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Church’s simply typed λ-calculus, where the type of a term is uniquely determined by the syntax
of the term and the type is an intrinsic property of the term.26

Church’s simply typed λ-calculus introduced the problem of determining whether a term in the
calculus was well-formed, which is essentially the problem of type checking. Curry’s formulation
entailed the more challenging problem of discovering a type assignment for a given untyped
term. The first solution of this type assignment problem (i.e., an algorithm for discovering a type
assignment for a term) for the λ-calculus was provided by Max Newman27 in 1943 [Hindley 2008;
Newman 1943].28

Curry returned to the problem of discovering (or inferring) type assignments more than 30 years
later [1969]. His approach was to use equations to express the constraints that unknown types had
to satisfy. For instance, given an application F A, the types tF and tA of F and A have to satisfy the
equation

tF = tA → t

for some type t . Other equations are generated for occurrences of primitive combinators whose
types are presented as type schemes for the basic combinators like K and S, which, in modern
notation, are:

K : u → v → u S : (u → (v → w)) → ((u → v) → (u → w))

where the type variables in the schemes are implicitly universally quantified. So the assignment
problem for a compound term generates a set of first-order order equations involving a set of type
variables representing the types to be determined. Curry presented an algorithm to solve such
equations that is equivalent to Robinson’s Unification algorithm [Robinson 1965].29 Curry claimed
that his algorithm produced a principal functional character (or what we now would call a principal
type scheme), meaning that any correct type assignment satisfying the constraints can be obtained
by applying a substitution to the scheme produced by the algorithm. Curry did not prove that the
algorithm produces the most general (i.e., principal) typing, however [1969]. Nevertheless, since
the algorithm is equivalent to Robinson’s, it does indeed have this principality property.

At about the same time, Hindley [1969] discovered the same type assignment algorithm, but in
his case he explicitly invoked Robinson’s unification algorithm to solve the typing equations, so
his proof of principality followed from Robinson’s result.

Note that in these three solutions of the type assignment problem (Newman 1943, Curry 1966/1969,
and Hindley 1969), the assignment problem is posed for a complete, closed, term, with no context
required. There is a good exposition of this Curry-style type assignment problem, in its purest
form, in Hindley’s Basic Simple Type Theory [1997], but it is worth explaining the intuitive idea
behind the algorithm and some of the terminology and notation here, using the modern notation
of natural semantics.30

26Curry returned to the issue of functionality of types in Combinatory logic in “Combinatory Logic, Volume 1” [1958,
Chapter 9], published 24 years later.
27Newman was Turing’s mentor at Cambridge and the head of the “Newmanry” group at Bletchley Park that created the
Colossus code-breaking computer.
28MacQueen [2015] gives an explanation of how Newman’s algorithm worked – it was not based on type equations.
29Robinson’s algorithm solves a set of equations between type terms involving type metavariables. The solution takes the
form of a substitution (a mapping from type metavariables to types), which can be applied across the entire derivation.
Robinson is not cited by Curry, so he appears to have independently discovered the algorithm.
30The term “natural semantics” was coined by Gilles Kahn [Kahn 1987] to describe an inference-rule based style of semantics
that mimicked the sequent style of natural deduction [Ryan and Sadler 1992, Section 4.3].
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We start with typing judgements. In their simplest form these are assertions that a given term
M has a given type T , written “ ⊢ M ⇒ T ,”31 where M is an term in some syntax for value
expressions and T is an expression in some type syntax. Let us assume that the term language is a
λ-calculus with some basic constants and primitive operators, and type terms are formed from type
variables (e.g., t ) and primitive type constants (e.g., int and bool) combined with a right-associative,
binary operator representing function types (→). We start with some assumed judgements such as

⊢ 0 ⇒ int ⊢ true ⇒ bool
⊢ + ⇒ int → int → int ⊢ not ⇒ bool → bool

We can infer additional typing judgements using inference rules, one of the most basic being the
rule for application:

⊢ M1 ⇒ T1 → T2 ⊢ M2 ⇒ T1

⊢ M1M2 ⇒ T2
(App)

which simply says that if a function expression of typeT1 → T2 is applied to an argument expression
of type T1, the result of the application has type T2. This simple form of typing judgements suffices
if we are only dealing with closed terms (with no free variables), but the inference rule for typing λ
abstractions requires a richer notion of judgement that works for terms with free variables. Thus a
context must be provided to give the types of any free variables, yielding the following form of
judgement:

Γ ⊢ M ⇒ T

where Γ is a typing environment — a finite map from term variables to type expressions. We can
also think of Γ as a finite sequence of typing assertions like x : int,y : bool . It is assumed that the
domain of Γ contains all the free variables in the termM . Then the inference rule for λ abstraction
is as follows:

Γ, x : T1 ⊢ M ⇒ T2

Γ ⊢ λx .M ⇒ T1 → T2
(Abs)

This rules says that if, when we assume that x has type T1, M has the type T2, then λx .M can be
assigned the type T1 → T2, and we can then drop the variable x from the context because it is not
a free variable of the abstraction λx .M . In these rules, the symbols T1 and T2 are metavariables
ranging over arbitrary type expressions, so in fact the inference rules are rule schemas, and there
are infinitely many instance rules obtained by substituting particular type expressions for the type
metavariables. But we can also substitute generalized type terms containing type metavariables for
the metavariables!
These rule instances plug together like Lego bricks to form type derivations (i.e., “proofs” of

typing judgements), but getting the interfaces between the constituent rule instances to match up
requires that certain constraints be satisfied. For instance, let us construct a derivation of a typing
for the term (λx .x) true.

x : T ⊢ x ⇒ T

⊢ λx .x ⇒ T → T ⊢ true ⇒ bool

⊢ (λx .x) true ⇒ T

31There are many different syntaxes for these judgements; we follow the notation used in the Definition of Standard
ML [Milner et al. 1990].
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In order for these rule instances to fit together, it is necessary that T = bool, which can be solved
by the substitution {T 7→ bool}. Applying this substitution to the entire derivation (including
contexts) gives

x : bool ⊢ x ⇒ bool

⊢ λx .x ⇒ bool → bool ⊢ true ⇒ bool

⊢ (λx .x) true ⇒ bool

Also note that, as illustrated by this example, the rules are syntax-driven, in the sense that there
is one rule governing each form of term construction (abstraction, application, etc.). So for any
term we can construct the template of its typing derivation, which will be analogous in structure
to the term itself, and to make the rules “match,” we have to solve a set of equations between type
terms involving type metavariables. As mentioned above, Robinson’s unification algorithm [1965]
provides a way to solve such sets of equations producing the necessary substitutions.
Sometimes after solving the equational constraints in a derivation and applying the resulting

substitution, there remain some residual type metavariables that were not eliminated. An example
would be

x : T1 ⊢ x ⇒ T1

⊢ λx .x ⇒ T1 → T1

y : T2 ⊢ y ⇒ T2

⊢ λy.y ⇒ T2 → T2

⊢ (λx .x) (λy.y) ⇒ T1

with the constraint that T1 = T2 → T2, yielding the substitution {T1 7→ T2 → T2}. Applying the
substitution to the derivation yields

x : T2 → T2 ⊢ x ⇒ T2 → T2

⊢ λx .x ⇒ (T2 → T2) → (T2 → T2)

y : T2 ⊢ y ⇒ T2

⊢ λy.y ⇒ T2 → T2

⊢ (λx .x) (λy.y) ⇒ T2 → T2

The residual metavariable T2 that was not eliminated can be replaced by any type at all in the
derivation, so the term (λx .x)(λy.y) can have any instantiation of the type scheme T2 → T2 as its
type (e.g., int → int). We capture this multiplicity of types by saying the term has the polymorphic
type (or polytype) ∀α .α → α .
If the equational constraints arising from a schematic derivation are not solvable (e.g., they

include an equation like int = bool or T = T → T ), then a type error has been detected.

4.2 Milner’s Type Inference Algorithm
When Milner began his project to develop the Edinburgh LCF system, his plan was to replace Lisp,
the metalanguage in the first generation Stanford LCF system, with a logically secure metalanguage,
where a bug in the metalanguage code could not lead to an invalid proof. He chose Landin’s
ISWIM language [1966b] as the basic framework for the metalanguage, but because ISWIM was
dynamically typed it would not provide the desired security. So Milner added a type system to
ISWIM, among other features, to guarantee that logical formulas would only be blessed as theorems
if they were valid in the LCF logic (i.e., were produced as the conclusions of proofs). The simplest
solution would have been to use a simply typed variant of ISWIM, since ISWIM was a syntactically
sugared version of the untyped λ-calculus, but that choice would have sacrificed much of the
flexibility and expressive power that he was accustomed to with Lisp. At that time, Milner was
not aware of the previous work on type inference by Newman, Curry, and Hindley, so he invented
his own version of type inference with one very significant twist. Instead of a whole-program
(or whole-expression) approach to the type assignment problem, he added a special treatment
for let bindings (local definitions), such that the definiens subexpression in a let expression could
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be assigned a typescheme (a polymorphic type) and the defined variable(s) could then be used
“generically” in the body of the let-expression (i.e., different occurrences of the variable could be
assigned different instances of its polymorphic type).

Milner implemented this typing algorithm in the ML type checker in the Edinburgh LCF system
and later published a theoretical development of what he called AlgorithmW in the paper “A theory
of type polymorphism in programming” [1978]. The term polymorphism, used in this sense, had
been in common use since Christopher Strachey introduced the term parametric polymorphism in
his 1967 lectures on “Fundamental Concepts of Programming Languages” [1967].

Let us review the type checking regime that Milner set out in his 1978 paper. He worked with a
simple variant of ISWIM with let and letrec expressions for local definitions of ordinary variables
and recursive functions, respectively. The language also provides some primitive types like int

and bool and some basic data structures like pairs and lists with their associated polymorphic
operations (e.g., fst : ∀(α, β). α × β → α ).
Let-bindings are treated specially by potentially assigning the defined variable a polymorphic

type. In an expression of the form “let x = e1 in e2,” the definiens e1 is typed as above in a context
derived from any enclosing definitions or λ-bindings that determine the types of the free variables
that appear in e1. The type derived for e1 is assigned to the bound variable x, and any remaining
type metavariables in that type are converted to generic (i.e., quantified) type variables – but only if
they do not appear in the types of any λ-bound variables in the context. For example, consider the
following two function definitions:

let g = λx . let f = λy . ( y , x ) in ( f 2 , f true )
let h = λx . let f = λy . cons ( y , x ) in ( f 2 , f true )

In the first definition, the λ-bound parameter xwill be assigned a type metavariableTx , representing
its initially unknown type, and the local let binding of f will be assigned a polymorphic type
α → α ×Tx , where α is generic (i.e., f : ∀α . α → α ×Tx ). Thus the body will type check because
the type of f can be instantiated to both f : int → int × Tx in f 2 and f : bool → bool × Tx in
f true. The type of definiens for g will be Tx → (int ×Tx ) × (bool ×Tx ), and since the context
is empty, Tx can be “generalized” (turned into a generic, or quantified, type variable), giving
g : ∀α . α → (int × α) × (bool × α).

In the second definition, the λ-bound parameter x will again initially be assigned a type Tx , and
the inner parameter y will be assigned type Ty . Then, to type check the body cons(y ,x), we are
forced to equate Tx with Ty list, which means that Ty list replaces Tx everywhere, including in
the type of x in the context. So now the type of x is Ty list, which means that Ty occurs the type
of the λ-bound variable x in the context of the let binding of f and thus it is not generic (i.e., not
replaced by a quantified type variable) in the type of f : Ty → Ty list. Since Ty is not generic,
it cannot be instantiated differently in the two expressions f 2 and f true. Assuming f 2 is typed
first, Ty will be replaced (everywhere) by int, making the type of f : int → int list and then
the typing of f true will fail.32
Note that the types of λ-bound variables are never generic. In other words, the argument of a

function cannot have a polymorphic type. As a consequence of this, polymorphic types assigned to
variables are always in prenex form, with all type variable quantifiers at the outermost level; thus a
type such as (∀α . α list → int) → int with inner quantifiers will never occur.

32Type metavariables like Tx are not valid forms of type expressions; they are temporary placeholders (representing
unknown types) used in the type inference algorithm and they must be eliminated either by substitution or by being
“generalized” and turned into universally quantified type variables. Thus they are sometimes called “unification variables.”
Milner’s description did not notationally differentiate type metavariables and quantified type variables — they were both
represented by lower-case Greek letters.
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In Section 3 of the 1978 paper, Milner provided a denotational semantics for both value terms and
type terms, and a declarative definition of the well-typing of an expression (with a context). He then
proved a Semantic Soundness theorem that intuitively says that the value of a well typed expression
belongs to the denotation of its type. The semantic evaluation function was defined to produce a
special value wrong if a semantic type error is detected (e.g., when applying a non-function to an
argument), where wrong is not a member of the denotation of any type. Thus if an evaluation of a
term produces a member of the denotation of its type, the evaluation cannot have gone “wrong”
(i.e., produced the value wrong).33

The next section of the paper presented two versions of a type checking/inference algorithm.
The first, called Algorithm W, is purely applicative. It is rather inefficient and cumbersome because
it involves a lot of machinery to pass around and compose the type substitutions that result from
local unifications of type equations as they appear during a traversal of the term being typed. A
second, imperative, version is called Algorithm J, where a global variable is used to accumulate the
substitutions.
Finally, the paper considered several extensions of the subject language. The first was adding

some additional primitive data structures, such as Cartesian product, disjoint sum, and lists, with
their associated polymorphic primitive operators. This extension is straightforward.

The second extension was to add assignable variables by introducing a letref expression (as in
LCF/ML). Done naïvely, this feature leads to unsoundness, for instance if y is assigned the generic
type α list in:

letref y = nil in ( y : = cons ( 2 , y ) , y : = cons ( true , y ) )

This top-level unsoundness was avoided by requiring the bound variable to have a monotype. We
discuss how the issue is dealt with in Standard ML below in Section 4.4.
The third extension was adding user-defined types (and n-ary type constructors) including

recursive types, defined using the abstype and absrectype declaration forms in LCF/ML. The
extension of the well-typing algorithms was asserted to be fairly straightforward (as known from
their implementation in LCF/ML).
The last two extensions considered were type coercions and overloaded operators. Milner

argued that adding coercions to correct some type errors (e.g., using an integer where a real is
expected) should be easy to support. The discussion of overloading is even more speculative, with
the conclusion that “there appears to be a good possibility of superposing this feature upon our
discipline.”

AlthoughMilner’s paper included a soundness proof for his polymorphic type system for a purely
applicative language, there were some theoretical loose ends left unresolved. Luis Damas addressed
these issues in his PhD thesis [1984] and a paper on “Principal type-schemes for functional programs”
with Milner that appeared in POPL in 1992 [1982]. He proved that the type inference algorithm
in [Milner 1978] was sound and complete, meaning that if an expression had a typing according to
the type inference rules, then algorithm W would produce a type for the expression and that that
type would be principal, i.e., as general as possible. He also considered two extensions of the basic
ML type system: (1) overloaded operators and (2) polymorphic references (see Section 4.4 below).

We next note several techniques that most real implementations of type inference use to improve
efficiency or usability of the ML type system.

33This approach to semantic soundness has the disadvantage that there is no way to know that all of the necessary checks
for “type errors” have been included in the rules defining evaluation. A more modern approach to soundness, now usually
referred to as “safety,” is based on showing that a transition-style dynamic semantics will not get “stuck” for well-typed
terms [Wright and Felleisen 1991] (see Pierce [2002, Section 8.3] for a tutorial explanation).
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Manipulating and composing substitutions is quite expensive. One technique for avoiding them is
to represent type metavariables as reference cells (a dynamically allocated cell that can be assigned
to). Then a substitution is realized by updating that cell with an instantiation; i.e., a link to the type
substituted for the type variable. This can lead to chains of instantiations, which can be compressed
in an amortized way when traversing types representations. In the implementation of LCF/ML,
type metavariables were represented by Lisp symbolic atoms, and substitution was performed by
setting a property (called @INSTANCE) of such an atom.
Determining whether a type variable is generic (polymorphic) in the naïve algorithm involves

an expensive search through all the types in the context type environment. This can be avoided by
annotating type variables with the λ-nesting depth at which the type variable was created. Instanti-
ating a variable during unification propagates this λ-level to type variables in the instantiating type
and determining whether a type metavariable is generalizable then requires only comparing its
internal λ-nesting depth with the current λ-nesting depth [Kuan and MacQueen 2007]. An alternate
form of binding-level bookkeeping due to Didier Rémy, and used in the Caml family of compilers,
uses let-binding nesting levels instead of λ-binding nesting levels [Rémy 1992].

Milner’s Algorithm W uses a top-down, left-to-right traversal of the abstract syntax tree of the
term being typed. In fact, there is quite a bit of flexibility in the choice of traversal order, and some
traversal orders provide better locality information when a type error is detected. For instance,
Oukseh Lee and Kwangkeun Yi [1998] propose an alternate algorithm M that uses a bottom-up
order. In practice, the type checkers used in compilers often use a mixture of top-down and bottom
up traversal, mainly to improve locality information about type errors (see Section 4.7 below).

There has also been considerable theoretical analysis of the type inference problem as process of
collecting constraints and then solving them. See Pottier and Rémy’s “The Essence of ML Type
Inference” [2005] for a summary of this work.
There is, finally, a fundamental principle underlying parametric polymorphism that virtually

all implementations depend on: the principle of uniform representation. The algorithm invoked
by a polymorphic function is expected to work the same no matter how the polymorphic type
of the function is instantiated. For instance, the list reversal function “rev : 'a list −> 'a list”
performs the same algorithm whether it is reversing a list of integers, booleans, string lists, or
functions. The algorithm works only on the list structure and is insensitive to the nature (or
type) of the elements of the list. In order to support this principle, implementations use a uniform
representation for all values, typically a 32-bit or 64-bit “word.” Small values like booleans or small
integers are represented directly in the content of the word, while larger and more complex values
like a function are represented by pointers to a heap-allocated structure. Often a tag bit is used to
differentiate between a direct value (“unboxed”) and a pointer value (“boxed”).

4.3 Type Constructors
Types as expressions can be atomic, like the primitive type int or a type variable α , or they can
be compound, like int → bool. Compound type expressions are constructed by applying type
constructors to argument type expressions. Type constructors are characterized by having an arity
or kind; thus “→” is a type constructor of arity 2 or kind Type # Type ⇒ Type, i.e., it is a binary
operator on types. We can treat primitive types like int as type constructors of arity 0.34

4.3.1 Primitive Type Constructors. The Curry-style type assignment system studied by Curry and
Hindley had just one primitive binary operator on types, “→,” for constructing function types. The

34In some formal developments, some forms of compound type expressions are also called “constructors” and are distin-
guished from “types.” We are taking a more naïve view here.
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ML type system is much richer. It has this function type operator and many others, and new type
operators can be defined by programmers.
For product types, LCF/ML had a single binary infix operator “#,” with product values (pairs)

constructed by the comma operator. Tuples of length greater than two were approximated by
nested (right associative) pairing. Cardelli ML kept the binary product operator but added a labeled
record construct with selectors. During the Standard ML design, there was a fairly early consensus
on including records, but there were multiple proposals for record syntax and semantics and the
design took a long time to settle. In the end, the final form of records used a class of field label
identifiers, with types such as

{ a : int , b : bool , c : string }

and corresponding record expressions such as

val r = { c = "xyz" , a = z−2 , b = not p }

The order of fields in the type was not important (canonically the fields would be ordered lexico-
graphically), but the order that the fields were written in a record expression determined the order
in which they would be evaluated. Selector operations would be automatically generated from field
labels; e.g., #a r. Record labels can be reused in different record types, so the meaning and type
of a selector operator like #a will depend on the type of its argument, and it is an error if its type
cannot be statically resolved.
Record patterns were also supported, with the ability to specify partial record patterns using

“...” to represent the unspecified part of the record (e.g., {a = x, ...}). The exact type of the
record, however, must be inferable from the context.
The binary pairing operator of LCF/ML was dropped in SML, but ordered tuples could be

represented by records with natural number labels (successive from 1 to n, for some n, with no
gaps). The normal, abbreviated syntax for a tuple expression (in this case a 3-tuple) is (e1, e2, e3).
The tuple expression is evaluated by evaluating the constituent element expressions from left to
right and returning the tuple of the resulting values. The type of a tuple expression is an n-ary
product type, written t1 ∗ t2 ∗ t3, where ti is the type of the corresponding element expression ei .
Tuples are heterogeneous in the sense that different element types can be mixed and they are “flat”
in the sense that a 3-tuple is not formed by nested pairing. The selector function for the nth element
of a tuple t where 1 ≤ n ≤ length(t), is #n. For example, the expression #2(1,3, true) returns 3.35

4.3.2 Type Abbreviations. The simplest way for a programmer to define a new type or type operator
is to declare a so-called type abbreviation.36 Here are two examples:

type point = real ∗ real

type ' a pair = ' a ∗ ' a

In the scope of the first declaration, point is simply an abbreviation for the type expression
real ∗ real. And pair is a simple type function such that int pair expands to (reduces to) int ∗ int.
So in this example, the types point and real pair are the same. Type abbreviations cannot be
recursive or mutually recursive, so it is always possible to eliminate type abbreviations by expanding
their definition, which is, in principle, what happens during type checking. Type abbreviations do
not add complexity to the type checking algorithm since they could, in principle, be eliminated
before type checking.

35By the way, the generic length function over tuples is not expressible in SML. There is no type containing all tuples.
36Type abbreviations were supported in LCF/ML by the lettype declaration.
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4.3.3 Datatypes. Cardelli ML had a notion of “variants” or labeled unions, but since it was decided
more or less from the beginning to adopt some form of the datatypes from the HOPE language,
Cardelli’s labeled unions would have been redundant. Instead, the datatype declaration was adopted.
Datatypes are a form of type (or type operator) definition that combine the following features in a
single mechanism:

• Discriminated union types, with data constructors serving as tags to discriminate between
variants.

• Recursive types could only be defined as datatypes. Here the constructors serve as wind-
ing/unwinding coercions in an iso-recursive form of recursive type.37

• Datatypes can have parameters, and so can define type operators (such as list) as well as
simple types.

The data constructors of a datatype can both construct values of the type, injecting variant values
into the union, and they can also discriminate on and deconstruct datatype values when used in
pattern matching.

Landin’s ISWIM had an informal style of data type specification that was not part of the language
itself, and was therefore not statically checkable [1966b].38 Here is an example of one of these
informal type definitions, for an abstract syntax for applicative expressions (λ expressions):

An expression is either simple
and is either an identifier

or a lambda expression
and has a bv which is a bound variable

and a body which is an expression ,
or compound

and has a rator
and a rand , both of which are expressions

This stylized prose description is made of unions and products, with the union variants identified
by words like simple and compound and products (or records) having fields named bv and body
(for a lambda expression) or rator and rand for the fields of a compound expression, while identifier
stands for some previously defined type. The convention is that the names simple and compound
designate recognizer functions that can distinguish between the two variants of the union type
expression, and similarly for the two variants of simple expressions. Meanwhile, bv, body, rator,
and rand serve as selectors from their respective record types. There would also be a convention
for variant names like simple and compound to be used (perhaps with a standard prefix like “cons”
or “mk”) as constructors for the corresponding versions of expression, so the union types were
implicitly discriminated unions.

In Standard ML, we can express this abstract syntax using a pair of mutually recursive datatypes.

datatype simple =
= MkIdentifier of identifier

| MkLambdaExpression of { bv : variable , body : expression }

37The term iso-recursive indicates a form of type recursion that is mediated by coercive operations relating the recursive type
to its unfolded form. An alternative is equi-recursive types, where the recursive type is directly equivalent to its unfolding.
See Pierce [2002, Section 20.2] for further discussion.
38Landin’s style of definition was probably inspired by McCarthy’s earlier system for defining the abstract syntax of
languages [McCarthy 1963, 1966].
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and expression =
= MkSimple of simple

| MkCompound of { rator : expression , rand : expression }

and the definition in HOPE would be a minor notational variant of this.
A bridge between Landin’s informal method of defining structured data and the datatypes of

HOPE and Standard ML was provided by a simple language, named NPL, that Burstall described
in a 1977 paper [1977]. NPL had a form of types with data constructors where the type and its
constructors could be declared independently, as with Standard ML’s primitive exn type. This
language had clausal, first-order, function definitions and patterns built with data constructors.
One important change that HOPE introduced relative to NPL was to require “closed” datatype

declarations, where a datatype and all its constructors were declared together. The point of this
change was to allow optimized runtime representations of constructors and optimized pattern
matching, where a set of patterns (for a clausal function or case expressions) could be processed
to produce very efficient matching code with no backtracking [Baudinet and MacQueen 1985;
Maranget 2008; Pettersson 1992; Sestoft 1996]. The second of these optimizations was part of the
first HOPE compiler and was refined in the SML/NJ compiler.

Datatype declarations are generative, in the sense that whenever a datatype is statically processed
(we say “elaborated”) a fresh type constructor is created that is distinct from all existing type
constructors. The rationales for this generative form of type declaration were:

• It is consistent with the way that abstract types (declared with abstype and absrectype)
worked in LCF/ML and datatypes in HOPE. Datatypes in part replaced the abstype mech-
anism of LCF/ML, where they were the only way to define recursive structured types like
trees.

• It made comparison of types in the type checker simple, since datatype (and abstype)
constructors behaved as atomic, uninterpreted operators in type expressions.

• It avoided a serious technical problem that would have arisen if type equivalence treated
recursive types transparently; i.e., adopted equi-recursive types instead of iso-recursive types
(which datatypes embody). Marvin Solomon [1978] had shown that the type equivalence
problem with n-ary (n > 0) recursive type operators was the same as the equivalence of
deterministic push-down automata (which was not known to be decidable at that time). Much
later this problem was determined to be decidable, but the decision algorithm was not simple
or efficient [Pottier 2011].

Datatypes are allowed to occur within a dynamic context, such as an expression or even a
function body, but such a datatype still has a unique static identity.39 But if a datatype occurs within
a functor body, it creates a new static type constructor for each application of the functor. Thus
both datatype declarations and functor applications (if the functor body defined datatypes) have a
static effect of generating new types, or rather, new unique type constructors.

SML has a couple of peculiar pseudo-datatypes: ref and exn. The primitive ref type is treated as
if it was defined by

datatype ' a ref = ref of ' a

in the sense that the ref data constructor may be used like a normal constructor to both construct
values in expressions and destruct values in patterns, but ref is not really a datatype, since its
values are mutable, with special equality semantics.

39This design decision was rather odd, and it is not considered good programming practice to define types within expressions.
On the other hand, some have advocated for module declarations within expressions, which would entail the same thing.
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The exn constructor, on the other hand, is a very convenient way of simplifying the handling of
multiple potential exceptions by a form of pattern-matching similar to a case expression. The exn

type is effectively a special, open-ended datatype whose constructors (exception constructors) can
be declared separately, with no bound on the number of constructors. Thus the exn type can be
used (or abused?) in cases where we need an “open-ended” union, although this feature was not
the original intent, and there is no way to create new open datatypes like exn.

4.4 The Problem of Effects
The type inference schemes of Newman, Curry, Hindley, and finally Milner with Algorithm W
had the beautiful property of producing the principal or most general typing for a term. For ML,
however, there was a problem: the problem of side-effects, which, if not handled with great care,
could make the type system unsound.
This problem was manifested in LCF/ML in terms of the letref declaration, which introduced

an initialized assignable variable. This construct could potentially allow unsound examples such as:

letref x = [ ] in

( x : = [ 1 ] ;
not ( hd x ) ) ; ;

If x is assigned the polymorphic type ∀α . αlist then the two occurrences of x in the body of the
let-expression could be assigned two independent instances of that polymorphic type, namely
int list and bool list, and the expression would type check with type bool, thus transforming
the value 1 into a boolean! To avoid this problem, LCF/ML introduced the following rather obscure
and ad hoc constraints on the typing of variable occurrences (where “\” represents λ) [Gordon et al.
1979, Page 49]:

(i) If x is bound by \ or letref, then x is ascribed the same type as its binding occurrence. In
the case of letref, this must be monotype if (a) the letref is top-level or (b) an assignment to
x occurs within a \-expression within its scope.

(ii) If x is bound by let or letrec, then x has type ty, where ty is an instance of the type of the
binding occurrence of x (i.e. the generic type of x), in which type variables occurring in the
types of current \-bound or letref bound identifiers are not instantiated.

In the example above, the letref-bound x could not be assigned a polymorphic type because the
expression was (assumed to be) at top-level. Thus the assignment statement x := [1] would force
x to have the monotype int list and the expression not(hd x) would cause a type error because
(hd x) : int.
The next step toward a sound treatment of assignment and polymorphism occurred in the early

1980s. In 1979, Gordon wrote a brief note “Locations as first class objects in ML” [1980] proposing
the ref type for ML, with a restricted type discipline he called weak polymorphism based on weak
type variables. Gordon suggested this as a research topic to Luis Damas, who eventually addressed
the problem in his PhD thesis [Damas 1984, Chapter 3] using a rather complex method where typing
judgements were decorated by sets of types involved in refs. Cardelli got the idea to use the ref type
either from Gordon’s note or via discussions with Damas, with whom he shared a grad-student
office for a time. At the end of Chapter 3 of his thesis, Damas returned to a simpler approach to the
problem of refs and polymorphism similar to the weak polymorphism suggested by Gordon, and
he mentioned that both he and Cardelli implemented this approach.40 Weak polymorphism is not

40At one point, Cardelli had Damas write down a rough, half-page sketch of his algorithm that was circulated for several
years and served as the starting point of multiple implementations of the idea. For instance, MacQueen adopted the design
in the original type checker for the Standard ML of New Jersey compiler [MacQueen 1983a].
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mentioned in the various versions of Cardelli’s ML manuals [1982d; 1983b; 1984b], however, where
the ref operator is described as having a normal polymorphic type.41

Now let us illustrate again the need for a careful treatment of polymorphism and assigment when
using ref types. Assume, as in Cardelli ML and Standard ML, assignment side effects are introduced
through the ref primitive type and its associated operators. Assume also, that we, naïvely, assign
the following ordinary polymorphic types to those operators:

val ref : ' a −> ' a ref

val : = : ' a ref ∗ ' a −> unit

val ! : ' a ref −> ' a

Now with these types, the above LCF/ML example can be coded as follows:
let val x = ref [ ]

in

x : = [ 1 ] ;
not ( hd ( ! x ) )

end

The problem is that at the binding introducing variable x, if x is assigned the polymorphic type
“ 'a list ref”, then the two occurrences of x in the body of the let expression can have their types
be independently instantiated to “int list ref” and “bool list ref”, which again means that the
result would have type bool and the integer value 1 will have been converted to a boolean.

The question is how to modify polymorphic type inference for pure expressions to prevent this
unsound outcome? The original solution in Standard ML was to introduce a special variety of type
variable, called an imperative type variables, which are restricted on when they can be generalized.
In this example, the primitive function ref is defined to have a restricted form of polymorphic type:

val ref : ' _a −> ' _a ref

where “ '_a” is an imperative type variable. Such a type variable can be instantiated to any type
τ as before, but the property of being imperative is inherited by any type variables in τ . In our
example, the type inferred for “ref []” will be “_T list ref,” where the type metavariable _T has
inherited the “weak” attribute from the type of ref. Now a special restriction controls whether the
type of x can be generalized to make it polymorphic. Generalization is only allowed if the definiens
ref [] of the declaration of x is non-expansive, meaning that it is of a restricted class of expressions
that do not invoke any “serious” computation. But in this case, the application ref [] is expansive,
because it involves the allocation and initialization of a new ref cell. Hence the type of x will be
ungeneralized _T list. The type metavariable _T will be instantiated to int when type checking
the assignment “x := [1] ,” causing the type of x to become “int list ref.” Then the expression
“not (hd (!x )) ” will fail to type check.

The theory for imperative type variables is developed in Tofte’s paper “Type Inference for
Polymorphic References” [1990]. Harper developed a much simpler proof of soundness in [Harper
1994].

This solution using imperative type variables works, but it has some unpleasant side effects. For
instance, an alternate definition of the identity function of the form

val id = fn x => ! ( ref x )

which temporarily creates a ref cell will be assigned an imperative polymorphic type
id : ' _a −> ' _a

41The notes at the end of [Cardelli 1982c], mention that the 5-11-82 Unix version has a “New typechecker for ref types.” It is
not known whether this type checker used weak polymorphism, but it is likely.
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even though its use of a reference cell is benign because it is encapsulated and the ephemeral
reference cell cannot “escape” to cause problems.

Another issue is that an imperative polymorphic type cannot be allowed to match a pure (that is,
ordinary) polymorphic type in a signature specification, so purely internal and contained use of
references can contaminate an implementation so that it cannot be used to implement a signature
with pure polymorphic value specifications. For example, the function id defined above could
not be used to satisfy a signature specification of the form “type id : 'a −> 'a,” which is a kind of
violation of abstraction.

In the SML/NJ compiler [Appel and MacQueen 1991; Appel and MacQueen 1987], a slightly
liberalized variant of this scheme was implemented whereby imperative type variables had an
associated numeric weakness and only type variables of weakness 0 were prevented from being
generalized. This approach moderately increased the flexibility of the type system, but did not
really eliminate the basic problems with imperative polymorphism.
Many people worked on the problem of polymorphic references over a period of several

years [Harper 1994; Leroy 1993; MacQueen 1983a; Mitchell and Viswanathan 1996; Tofte 1987, 1988,
1990; Wright 1995, 1992, 1993]. Ultimately, Andrew Wright cut the Gordian knot by proposing
to get rid of imperative type variables and replace them with a stronger, but simpler, restriction
on the generalization of types in let expressions [1995]. The key insight is that polymorphic
generalization in a pure, call-by-name language is justified by the interpretation of let-expressions
as β-redexes that can be reduced to an equivalent expression by substituting the definiens for all
occurrences of the defined variable in the scope of the binding.

let x = e1 in e2 → [e2/x]e1

Multiple occurrences of x in e2 are replaced by multiple copies of the expression e1. These multiple
copies can then be typed in their individual contexts, producing specialized versions of the “generic”
or polymorphic type of e1 that correspond to the different instantiations of that polymorphic type
that are produced during the type inference algorithm.
But in an call-by-value language, the dynamic semantics of let expressions evaluates the

definiens once, before substitution. The call-by-name and call-by-value interpretations are not
equivalent in the presence of effects, except in the special case that the definiens is a syntactic value
(e.g., a variable or λ-expression), which is guaranteed not to produce effects when it is (trivially)
evaluated. The failure of type safety resulting from treating references as polymorphic is just one
of several manifestation of this discrepancy, as evidenced by the discovery of the incompatibility of
unrestricted generalization with first-class continuations [Lillibridge and Harper 1991].

The restriction of polymorphic generalization to syntactic value expressions came to be known
as the value restriction42 and was adopted in the Definition (Revised) because it was found not to be
a significant limitation in practice.43 For example, in the case of a function defined by the partial
application of a function

val f = g x

one can restore polymorphism by η-expansion:

fun f y = g x y or val f = fn y => g x y

42In the Definition the restriction is called “non-expansiveness” because of the historical, but inaccurate, association of the
problem with the allocation of references.
43Wright examined over 200,000 lines of existing SML code and found only 31 η-expansions were required, along with a
small number of other minor edits [1995].
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which makes f a value and, thus, its type will be generalized. The value restriction had some disad-
vantages, however. For example, η-expansion may delay computations that could be performed
once, rather than once on each call, affecting efficiency. Another problem is that η-expansion
does not apply to abstract types, such as a type of parsing combinators, in which the underlying
representation as functions is not exposed to the programmer. For in that case even simple compu-
tations such as the composition of parsers violates the value restriction, precluding polymorphic
generalization, and there is no natural work-around. In practice, however, the vast majority of
existing SML code was not affected by the switch to the value restriction.

4.5 Equality Types
Equality is normally considered an intuitively “polymorphic” relation. But it technically does not
fit the pattern of parametric polymorphic functions, which obey the Uniformity Principle where
the underlying algorithm is insensitive to the instantiation of the polymorphic type. In the case of
equality, the algorithm for computing equality varies depending on the type of the elements being
compared and for some types (e.g., function types) it is not possible to compute equality at all. But
it is also the case that equality does not seem to fit the pattern of ad hoc overloaded operators like
addition, where the algorithms for different types of arguments may be entirely unrelated.

There is a natural subset of all types consisting of types that admit equality. For these types, the
computation of equality of values is driven systematically by the structure of the type. Although
not parametric polymorphic, equality seems to fit a notion of uniform type-driven polymorphism.
LCF/ML had a rather ill-defined notion of equality [Gordon et al. 1979, Appendix 3]:

[=] is bound to the expected predicate for an equality test at non-function types, but is
necessarily rather weak, and may give surprising results, at function types.

In Standard ML, however, it was decided that a more flexible pseudo-polymorphic treatment of
equality should be provided. This was achieved by introducing another special form of polymor-
phism with another special form of bound type variable, namely equality type variables. These type
variables arise from uses of the generic equality operation and can be generalized. But when these
variables are instantiated, they can only be instantiated to types in a restricted class, namely the
types that admit equality based on their known structure. One way of thinking about this class
of types is that they are the hereditarily concrete types. In particular, function types and abstract
types are excluded from this class, as are all types that are built up from function types or abstract
types. Recursive datatypes (such as list) are included, because they support an inductively defined
equality (given that the arguments of the type constructor, if any, support equality).

There are several ways to implement the polymorphic equality operation:
(1) One can use object descriptors that allow a runtime-system function to determine how to

compare values for equality. Since this information largely overlaps the requirements for
tracing garbage collection algorithms, it may involve little additional cost.

(2) One can implicitly pass an equality operation for the specific instantiation of an equality type
variable at runtime to the place where it is needed. This approach is similar to the dictionary
passing method used to implement Haskell type classes [Wadler and Blott 1989].

(3) One can monomorphize the program, which turns polymorphic equality into monomorphic
equality.

For Standard ML, the first implementation strategy is most common, but there have also been
examples of the second [Elsman 1998] and third approaches [Cejtin et al. 2000]. Also in cases where
an occurrence of equality is assigned a ground type, compilers can produce specialized inline code
to implement equality for that particular type, avoiding the need for runtime tracing of structure
(dictionary-passing can also be optimized in such cases).
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There are a couple of significant problems with polymorphic equality (beyond the additional
complexity in the type system). The first of these is that there is a hidden performance (or complexity)
trap in polymorphic equality if it is used naïvely. Generic equality of data structures, such as lists
and trees, takes time that is proportional to the size of the data structures. In general, when testing
equality on complex structures, exhaustive traversals of the structures being compared is not an
efficient approach. Often there is some designated component of the complex structure (say, a
unique identifier, or reference cell), that can serve as a proxy for the structure with regard to
equality and which can be compared efficiently. Another problem is that structural equality is
often the wrong notion when comparing values of a data abstraction. For example, a red-black-tree
implementation of finite sets admits multiple concrete representations of the same abstract set
value. Experienced programmers learn to avoid the use of polymorphic equality because of these
problems and instead define an efficient ad hoc equality operation for their nontrivial types. Such a
specialized equality operation is typically made available as part of the signature of a module, but it
has to be invoked via a specialized name because the operator “=” denotes only the generic version
of equality. For this reason some Standard ML designers (Harper and MacQueen) suggested that
polymorphic equality be removed from the language during the work on the Definition (Revised),
or at least that it be deprecated.

4.6 Overloading
LCF/ML had no overloading. There was only one numeric type, int, and the arithmetic and order
operations were defined only for int. On the other hand, HOPE had a very general scheme for
overloading, where functions, constants, and datatype constructors could all be overloaded. In HOPE,
overloading was resolved against the full contextual type, which allowed overloaded constants and
overloaded operations that were resolved by their return type. The general overloading scheme
coexisted fairly well with polymorphism (borrowed from LCF/ML), but the overloading resolution
algorithm was non-trivial, being based on Waltz’s relaxation algorithm for computer vision [Waltz
1975].

The complexity of overloading in Hope led some of the SML designers to oppose adding over-
loading to the language, but, in the end, the decision was to support “conventional” overloading of
arithmetic and order operators on numeric types, and order operations on character and string
types. Since all the instances of overloaded operators are of ground type, it is fairly easy to re-
solve overloading, but it must be resolved in a second phase after type inference, because type
inference provides the contextual type information needed to resolve overloading. The Definition
(Revised) extended this mechanism to also support overloading of literals (e.g., integer literals can be
overloaded in terms of precision) and added the notion of default types for overloaded constants.44

4.7 Understanding Type Errors
Type inference imposes a pragmatic cost: determining the cause of type errors can sometimes be
difficult, because type information flows from one place in the program text to another, possibly
distant, point by way of a series of unifications and their resulting type variable substitutions. Most
type checkers detect an error (depending of course on the details of the algorithm used) at a point
where two pieces of type information come into conflict. Because of the implicit type flow, the
program point where a conflict is detected may not be the source of the type error. The cause of the
error may also not be one of the points where the conflicting pieces of type information originate,

44Before default types, the function “fn x => x+x” could not be assigned a type, which was quite mysterious to novice
users, but under the Definition (Revised), the type of this function would be “int −> int,” since “+” defaults to integer
addition.
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but some intermediate point where the type flow is misdirected (e.g., by projecting the wrong
component of a pair).
In practice, the problem of understanding the cause of type error messages is mainly an issue

for relatively novice ML programmers. Experienced programmers develop a facility for mentally
tracing the flow of types, and they can easily find the cause of most type errors. The long-distance
flow of type information that can lead to mysterious type-error messages can be interrupted by
module boundaries and by selective addition of explicit type specifications in declarations, which
also help make code more readable. In those rare cases where the cause of a type error is not evident
after a few minutes thought, the source of an error can generally be determined by judicious
addition of some explicit type specifications.
As mentioned above (Section 4.2), the type checking algorithms used in a compilers have a

great deal of freedom to choose the order in which the abstract syntax tree is traversed. Type
checkers typically do incremental unifications to solve typing constraints at each node of the
abstract syntax tree, but they can use different strategies to control the “timing” of unifications
that may produce type errors. This flexibility can be used to improve the locality of error messages
by careful choice of the order of traversing the abstract syntax, using a combination of top-down
and bottom-up strategies [Lee and Yi 1998], or by choosing the points where unifications are
performed [McAdam 2002, 1998]. The default traversal orders used in theoretical descriptions, such
as Milner’s Algorithm W, were not designed with the goal of good type error messages and are
therefore not optimal for this purpose.
Nevertheless, deciphering type error messages is clearly a challenge for students learning ML.

Facilities that help explain type errors can also be useful for teaching programmers how type
inference and polymorphic typing work, even in the absence of type errors. Thus, over the years,
starting with Mitchell Wand [1986] and Gregory Johnson and Janet Walz [1986], over forty publica-
tions (including four PhD theses) have proposed solutions to the problem of producing better type
error messages that make it easier to identify the source of the error.
Many of these proposals to improve type error messages involve “instrumentation,” that is,

annotating various structures involved in type checking with type or program location information.
Type annotations can be attached to the abstract syntax tree and program locations can be attached
to types or type variables or type substitutions during the process of type checking. These annotated
structures can then be analyzed at the point of error detection or after the fact to produce more
exact and helpful information on the source of type errors [Beaven and Stansifer 1993; Chitil 2001;
Choppella 2002; Duggan and Bent 1996; MacQueen 2010; Wand 1986].
Other techniques that have been used in addition to instrumentation, or sometimes instead of

instrumentation, include annotated constraint solving [Hage and Heeren 2006; Pavlinovic et al.
2015; Stuckey et al. 2004; Wazny 2006]; program slicing [Haack and Wells 2004; Schilling 2011; Tip
and Dinesh 2001]; program modification [Bernstein and Stark 1995; Lerner et al. 2007; Sharrad et al.
2018]; attribute grammars [Johnson and Walz 1986]; Bayesian statistics [Zhang and Myers 2014];
SMT solving [Pavlinovic et al. 2015]; and machine learning [Wu et al. 2017].

5 MODULES
The Standard ML module system was the most novel and technically challenging part of the
language. Its origins go back to discussions between Rod Burstall and David MacQueen as early as
1977, when work on the HOPE language was just beginning. MacQueen wrote a proposal to add
modules to HOPE in 1981 [1981] and this design eventually became the basis for the early module
proposals for Standard ML. The initial design proposal was circulated in August 1983 following the
first SML design meeting. A year later the first published module design proposal was presented at
the 1984 Lisp and Functional Programming conference [MacQueen 1984], alongside Robin Milner’s
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proposal for the Core language (the language of expressions and their types). Another final (pre-
Definition) version appeared in Polymorphism in October 1985 [MacQueen 1985b] and in an LFCS45
tech report in March 1986 [Harper et al. 1986].

The modules design was initially inspired by previous work in the field of algebraic specification,
particularly the work of Burstall and Joseph Goguen on the specification language Clear [1977].
The design was also influenced by basic ideas from universal algebra [Cohn 1965] and category
theory, and later on by ideas from Per Martin-Löf on intuitionistic type theory [1982].

The basic principles behind the design were as follows:

• A module is a collection of named components, which can typically be types or values,
syntactically expressed by encapsulating a sequence of declarations with the keywords
“struct” and “end,” forming a basic structure expression.46

• Amodule has a static description or “type,” which we call a signature.47 A signature contains a
static specification for each component of the module; e.g., a type specification or the type of
a variable. Signatures play the same rôle for modules as types do for values, and the signature
of a module can be statically checked and inferred, just as types are checked and inferred for
expressions.

• Module definitions and signatures are independent. Several different signatures can describe
(via ascription48) a given module, and a given signature can be ascribed to different modules.
So the relation between modules (implementations) and signatures (interfaces) is many to
many, unlike many other module systems, where there is a fixed binding between a particular
module and its signature.

• Modules, as well as types and values, can be components of other modules. So modules can
have a hierarchical structure. This nesting of modules means that signatures may also contain
specifications of module components by their name and signature.

• A module expression can be lambda-abstracted with respect to a module name (with an
ascribed signature) to form a module function, which is called a functor. This is an instance
of Landin’s Correspondence Principle [Landin 1966b; Tennent 1977]. A new module can be
constructed by applying a functor to a module argument.49

• Functors give rise to a requirement on the module-system design to provide a mechanism for
specifying when two type components within the functor parameter are equal. SML achieves
this mechanism via sharing constraints.

• Module signatures can control access to components selectively. Thus components can be
hidden (i.e., not exported) simply by not including them in a signature ascribed to a module.
Thus signature ascription expresses an interface coercion.

45Laboratory for Foundations of Computer Science, University of Edinburgh.
46The word “structure” was suggested by the terminology of “mathematical structure” from universal algebra, where it
denotes a model of some signature and set of axioms (e.g., a group, or a ring).
47Another term from universal algebra.
48Ascription means asserting that a module has or satisfies a given signature using the notation “M : SIG.” This mechanism
is the module analogue of the similar notation for ascribing types to expressions; i.e., “e : ty.”
49The term “functor” is borrowed from category theory. An alternate suggestion was “parametric module,” which Burstall
objected to on the grounds that we don’t call ordinary functions “parametric values.”
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5.1 The Basic Design
As mentioned above, a simple module, or structure, is an encapsulated sequence of declarations,
where later declarations may mention names declared earlier in the sequence. The encapsulation is
expressed by the syntax

struct

declarations
end

where the keywords struct and end delimit the declarations forming the module (structure) body.
This syntax is the basic form of structure expression. Usually, a structure is named in a structure
declaration of the form:

structure S =
struct

declarations
end

where the declaration form is introduced by the keyword structure, and S is the name to which
the structure is bound.

A simple example is

structure Nat0 =
struct

datatype nat = Z | S of nat

val zero = Z

fun add Z m = m

| add ( S n ) m = S ( add n m )
end

In the scope of this declaration, the structure variable Nat0 denotes the structure defined by the
structure expression following the equal sign.
By default, all the named components (types and values) defined in the declarations of the

structure are accessible via the module variable using the dot notation; e.g., Nat0.nat denotes the
type component of the structure and Nat0.zero denotes the zero value. In this example, the visible
components are those defined by the sequence of three declarations: the datatype Nat0.nat, and its
associated data constructors Nat0.Z and Nat0.S, and the values Nat0.zero and Nat0.add. A structure
can also be thought of as a heterogeneous record containing a mixture of types and values (and
structures), but some fields of the record depend on other, necessarily earlier fields; e.g., the type of
Nat0.add is “Nat0.nat −> Nat0.nat −> Nat0.nat,” so Nat.add depends, statically, on Nat0.nat.
A type for a structure can be expressed as a signature, which gives static specifications for its

components. Continuing with the Nat0 example, a possible signature for this structure would be:

sig

type nat

val zero : nat

val add : nat −> nat −> nat

end

and this signature could be assigned a name using a signature declaration such as:50

50A common convention is to use initial caps for structure and functor names, and all caps for signatures, but this convention
is not enforced by the language.

Proc. ACM Program. Lang., Vol. 4, No. HOPL, Article 86. Publication date: June 2020.



The History of Standard ML 86:37

signature NAT =
sig

type nat

val zero : nat

val add : nat −> nat −> nat

end

Once we have a way of defining both structures and signatures, the question arises of how they
are related. Though these declarations are entirely independent, meaning neither depends on the
other, it will be the case that the structure Nat0 will match the signature NAT. The result of that
matching can be expressed by the signature ascription “Nat0 : NAT,” which is a well-typed structure
expression that has a signature that is different from innate signature of Nat0.
To understand why, consider this similar declaration of a structure Nat1 where the structure

variable is constrained by the signature NAT:
structure Nat1 : NAT =

struct

datatype nat = Z | S of nat

val zero = Z

fun add Z m = m

| add ( S n ) m = S ( add n m )
end

The effect of a such a signature constraint in a declaration is defined via a process called signature
matching, which has two functions:
(1) verifying, by name, that the components specified in the signature exist in the structure and

agree with their specification in the signature, and
(2) masking or eliminating components defined in the structure but not specified in the signature.

In the example above, Nat1 differs from the earlier Nat0 in that Nat1.Z and Nat1.S are not available
as constructors for Nat1.nat, because those components are not specified in the signature NAT.
In this particular example, the signature constraint is too restrictive, because the components

specified in the signature are sufficient to define only one value of type Nat1.nat, namely Nat1.zero.
Thus, the signature NAT is not an adequate description of the interface for the structure Nat1 or, in
other words, the NAT signature hides too much of the structure, eliminating essential functionality.

One way of fixing this problem is by using a datatype specification in the signature to expose the
complete structure of the nat datatype. In this example, a more complete signature can be defined
as follows:

signature NAT1 =
sig

datatype nat = Z | S of nat

val zero : nat

val add : nat −> nat −> nat

end

structure Nat1 : NAT1 = ... as before ...

The result is that the datatype specification matches the isomorphic datatype declaration in
a structure; i.e., the “algebra” of the datatype specification is isomorphic to the “algebra” of the
actual datatype declaration in the matching structure, so that the whole datatype, including its
constructors, is exported through the signature.
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Another approach to fixing the problem with the NAT signature is to augment the Nat1 structure
and its signature with a successor function.

signature NAT2 =
sig

type nat

val zero : nat

val succ : nat −> nat

val add : nat −> nat −> nat

end

structure Nat2 : NAT2 =
struct

· · ·

val succ = S

· · ·

end

Effectively, this solution means that the constructors Z and S are exported indirectly as ordinary
(nonconstructor) values zero and succ, and these are sufficient to construct any natural number
(e.g., 2 = succ(succ(zero))). But because the data constructors are not available, as such, from Nat2,
client code cannot use pattern matching over datatype nat to do case analysis and deconstruction
of values of that type. We would need to add functions like isZero and pred to recover the full
expressiveness provided by the datatype.51
Signature matching provides two mechanisms to constrain the components of a structure by a

signature.
(1) The signature may specify only a proper subset of the components of the structure. In this

case, the structure resulting from the match is coerced to have only the components specified
in the signature. In this way, a signature constraint prevents access to components of the
constrained structure that are not meant to be accessible to its clients.

(2) The type specified for a value component can be a less-general instance of the actual poly-
morphic type of the component in the structure. For example:

signature SIG = sig

type t

val id : t −> t

end

structure S : SIG = struct

type t = int

val x = 3 (* a local , nonexported value *)

fun id x = x (* type id : 'a -> 'a *)

end

Here the structure S has only two components, “S .t = int” and “S .id : S .t −> S.t” (or
“int −> int”). The x component of the structure is hidden by the signature constraint, so S .x
is undefined.

51This also means that Nat2.nat is a de facto abstract type because we cannot access the native structure of the type. On
the other hand, it is not properly abstract because it is an equality type, and that attribute is preserved through the signature
matching.
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This example also illustrates the “transparency” of matching of type components, meaning
that the type component S .t resulting from matching the specification type t is statically
identical to the type defined in the right-hand-side structure expression; i.e., “S .t = int.”

Another major feature of the module system is that it supports the definition of module functions,
called functors. A simple example is a sorting functor:

signature ORD = sig

type elem

val le : elem ∗ elem −> bool (* a less -than -or-equal relation *)

end

functor Sort ( X : ORD ) : sig

val sort : X . elem list −> X . elem list

end = struct

fun insert ( x , [ ] ) = [ x ]
| insert ( x , y : : ys ) =

if X . le ( x , y ) then x : : y : : ys else y : : insert ( x , ys )
fun sort nil = nil

| sort ( x : : xs ) = insert ( x , sort xs )
end

This functor can be instantiated to sort integers as follows:
structure IntOrd : ORD = struct

type elem = int

val le = Int . <=
end

structure IntSort = Sort ( IntOrd )

and simiarly to sort strings
structure StringOrd : ORD = struct

type elem = string

val le = String . <=
end

structure StringSort = Sort ( StringOrd )

This example brings up an interesting point, which is that while IntSort.sort sorts with respect
to the usual ordering of integers (Int.<=), one can define another sorting structure

structure IntRevOrd : ORD = struct

type elem = int

val le = Int . >=
end

structure IntRevSort = Sort ( IntRevOrd )

that sorts based on the reverse order. The types of IntSort.sort and IntRevSort.sort are the same,
so it is possible to confuse them and use the wrong sorting function in some context. We can make
the dependency of the sort function on a particular ORD structure explicit by including that structure
as a substructure of the result of the Sort functor:

signature SORT =
sig

structure Ord : ORD
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val sort : Ord . elem list −> Ord . elem list

end

functor Sort ( X : ORD ) : SORT =
struct

structure Ord = X

. . .
end

But we still need a mechanism to assert that the Ord structure for a given sorting structure is the
expected one. This requirement leads to the phenomenon of structure sharing.
Functors can have multiple structure arguments, which can be considered substructures of a

single, anonymous structure argument. These arguments can interact with one another based on
common inheritance of types and substructures.52 For example, suppose that we have the following
functor definition:

functor F ( structure X : SORT structure Y : SORT ) = struct . . . end

where it is important that X and Y have sort functions with respect to the same ordering function
le (necessarily over the same type). We can insure this property by adding a sharing constraint on
the arguments of F. This constraint is expressed as

functor F ( structure X : SORT structure Y : SORT sharing X . Ord = Y . Ord )
= struct . . . end

The critical point is that the substructures X .Ord and Y .Ord have a static identity as structures that
can be used to statically check the sharing specification. This static sharing implies that they are
the same structure, which ensures that the le functions in X .Ord and Y .Ord agree.

An interesting property of this semantics for “strong” structure sharing is that sharing persists
even if structures are coerced to have new interfaces by signature ascription. The underlying
identity of a structure is propagated to the structure derived by coercive signature matching, even
though the signature of the structure has been changed.
This strong notion of static structure identity was part of the original design and was included

in the Definition. But it resulted in some serious complications in the Definition, as noted in
the Commentary [Milner and Tofte 1991, Section 6.3], although with somewhat milder impact
on implementations of the module system. In other words, while it was not too challenging to
implement this sharing semantics in a compiler, it was a significant challenge to express it in the
formal Definition.
There is a weaker notion of sharing that does not guarantee that structures are the same

(including at the value level), but only that they contain the same static elements (i.e., types or
type constructors) where they overlap. This weaker notion of structure sharing was adopted in the
Definition (Revised) [Milner et al. 1997] in order to simplify the semantics of sharing. The most
important difference between the two forms of sharing is that structure sharing guarantees that
any mutable state defined in the shared structures must be the same (since the structures are the
same), whereas type sharing does not enforce that guarantee. This weaker form of sharing also
does not provide a way to guarantee that the X .Ord and Y .Ord structures from the example above
provide the same ordering function.

52The inheritance comes from references to the same components and should not be confused with the notion of class-based
inheritance found in object-oriented languages.
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5.2 The Evolution of the Design of Modules
As mentioned above, the design of modules for ML was originally inspired by the Clear algebraic
specification language of Burstall and Gougen [1977]. The Clear specification language, based on
the notion of many-sorted algebraic theories, had a notion of a signature, which would specify a
set of sorts or types, along with a set of operator symbols with their types (expressed as sequences
of argument and result sorts). A theory consisted of a signature together with a set of equations
specifying the behavior of the operations. Some of these equations might serve to define the
operators, while others might specify properties such as commutativity of an operation.
Clear’s major innovation was to provide a set of theory-building operations that could build

complex specifications out of simpler ones. There were four basic theory building operations:
combine, enrich, induce, and derive. The meanings of these operations are not relevant here, except
to say that all but induce (the inductive closure of a theory) have rough analogues in the SML
module system.53

The power of Clear was greatly extended by the ability to define theory procedures (or functions)
that express compound theory constructions relative to theory parameters. These theory parameters
were constrained by theories that serve as meta-sorts, which impose requirements on them, acting
roughly as an SML signature if we ignore the rôle of equations. These theory procedures are roughly
analogous to functors in the SML module system. There is even a notion of sharing of sub-theories,
expressed by identity of names of the sub-theories, which is analogous to sharing in modules.

Over the period 1978 to 1980 MacQueen and Burstall discussed ways to adapt the parameterized
theory idea (theory procedures) from Clear to the context of the HOPE programming language
that was being designed at that time. These discussions led to a proposal for modules for HOPE
that was published at the 1981 Functional Programming and Computer Architecture conference at
Aspenäs in Sweden [MacQueen 1981]. The Alphard [Wulf et al. 1976] and CLU [Liskov et al. 1981,
1977] languages, which supported parameterizing over types constrained by associated operation
interfaces, were additional influences.

The terminology chosen for HOPEmodules differed from Clear in that the analogue of a signature
in Clear was called an interface, and a theory in Clear roughly corresponded to a structure in HOPE,
or, to be more precise, a structure corresponds to an algebra that is a model of a theory. In the
HOPE module proposal, there was no provision for including equations specifying the behavior
of operations and constants, only the implementation of operators. Operations could also be
higher-order, while Clear, being algebraic, supported only first-order operations.
Interfaces (i.e., signatures) would typically be based on other interfaces. Some examples of

interface definitions in the proposed HOPE module system are:
interface BOOL

data bool == true ++ false

end

interface TRIV

data elem

end

interface POSET ( BOOL , TRIV )
dec < : elem # elem −> bool

end

53Related, roughly contemporary, investigations of parameterized algebraic specifications were being carried out by the
ADJ group at IBM Research and collaborators [Ehrig et al. 1980; Thatcher et al. 1982].
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interface LIST ( BOOL )
data list a == nil ++ cons ( a , list a )
dec null : list a −> bool

end

interface SORTING ( POSET , LIST )
dec sort : list elem −> list elem

dec is_ord : list elem −> bool

end

Here the POSET interface depends on, and inherits, the types (and operators) from the BOOL and
TRIV interfaces, namely the types bool and elem that it uses. Structures implementing (matching)
the POSET interface will correspondingly be based on and incorporate structures for BOOL and TRIV.
Note that the SORTING interface is based on the interfaces POSET and LIST, both of which are based
on BOOL. Implicitly, because of the common mention of the name BOOL, it is assumed that in any
structure implementing SORTING, the underlying substructures for POSET and LIST share the same
BOOL substructure.
The parameters in these interfaces can be instantiated explicitly when defining structures

implementing the interfaces and corresponding structure definitions can be parameterized with
respect to the required substructures/subinterfaces. Thus, a structure implementing SORTING can be
defined in various ways:
(1) structure Sorting : SORTING(P0,L0),
(2) structure Sorting(P : POSET) : SORTING(P,L0),
(3) structure Sorting(L : LIST)(P : POSET) : SORTING(P,L).

where P0 and L0 are the names of particular structures implementing POSET and LIST, respectively.
Note also that (2) and (3) are parameterized structures54 and that (3) is also a curried definition,
implying that a limited form of higher-order structure is supported.
Another interesting aspect of this module system design was that datatypes could be specified

in interfaces, and the corresponding free implementation of such datatypes could then be defined
in a matching structure as illustrated in the following code:

interface BOOL

data bool == true ++ false

end

structure Bool : BOOL

data-rep bool is free

end

structure List : LIST ( Bool )
data-rep list is free

−−− null ( nil ) <= true

−−− null ( cons ( x , l ) ) <= false

end

The definition data bool == true ++ false implements the type bool as the canonical free algebra
over the set of constructors, and similarly for the list type constructor in structure List. Note
54Precursors of functors in Standard ML.
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also how the LIST interface is applied to the structure argument Bool to explicitly designate what
structure instantiates the BOOL interface in LIST. Thus the design supported parameterized signatures
and their application to structures.

This proposed module system for HOPE was a paper design and was not implemented, nor was
there a metatheory developed for it, but it did provide a stepping-stone on the way to the future
Standard ML module system.
In the weeks after the first Standard ML design meeting in Edinburgh (April 1983), there was

some discussion of adding a module system to the Bare ML language of Milner’s proposal. Because
of MacQueen’s work on a design for a module system for HOPE, it seemed natural for him to take
the lead in this project, and a plan was discussed between Milner, MacQueen and Luca Cardelli
during July 1983 by post and at least one phone call. MacQueen produced an outline of a module
proposal in mid-July, which was expanded to an initial eight-page proposal, with an additional
three pages of explanatory notes, by the beginning of August.

Section 4 of Milner’s second draft of the Proposal for Standard ML [Milner 1983c] was concerned
with a form of declarations called directives. Three varieties of directives were described, the first
was to introduce or cancel infix properties for identifiers, the second introduced type abbreviations.
The third form of directives, called specification directives, was concerned with specifying external
type constructor names (with their arity), and value variables, constructors, and exception identifiers
(with their types), that are used in a source file but not defined locally. These directives were intended
to specify an interface to be satisfied by the context (environment) in which a file is compiled. They
were included to support an anticipated separate compilation facility for the language.

MacQueen’s initial August 1983 draft proposal took an informal approach, viewing modules
as declarations (possibly contained in a separate source file) that require a context environment
satisfying appropriate specifications for the declaration’s free identifiers (a so-called inward inter-
face). The declaration, once compiled and executed relative to this context environment, produces
an output environment binding the identifiers declared in the declaration, while static analysis
(i.e., type checking) of the declaration would produce a corresponding outward interface. Thus a
declaration, accompanied by an inward specification covering its free identifiers, was viewed as
defining a mapping over typed environments, where the environment types are specifications:

J⟨I-spec,dec⟩K : Env I-spec → Env O-spec

The proposal introduced no specialized module syntax, viewing modules essentially as (potentially
separately compiled) source files containing declarations together with their required inward
specifications to make them self-contained. The environment produced by “evaluating” such a
module was called an instance of the module, and it is assumed that a module could be evaluated
multiple times (with respect to different context environments) to produce multiple instances.
Beyond this, the proposal suggests that the input environments required by a module could be

produced by concatenating the environments produced as instances of other modules, assuming that
the concatenated environment satisfies the module’s inward specification. Thus ifC = ⟨I-spec,dec⟩
and A and B are module instances, an instance of C could be created by the application JCK(A;B),
where semicolon denotes concatenation of environments. This could be expressed more explicitly
by writing functions over module instances like

FC = λA : O-specA,B : O-specB .JCK(A;B)

assuming the inward specification ofC is covered by the concatenation of the outward specifications
O-specA and O-specB .
The final issue considered in the proposal is that types in the (inferred) outward specification

of a declaration might mention type constructors inherited from its context environment, so the
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outward specification and the environment itself might not be self-contained. A suggested, but
rather crude, solution was to concatenate the context environment with the result environment.

Clearly this initial proposal was just a sketch of some principles that might govern the construc-
tion of environments resulting from evaluation of declarations: a kind of environment calculus. No
syntactic support for defining and using modules was proposed and there was not even a way of
naming modules. The main motivating objective was to support separate compilation of modules,
based on inward specifications. At this point, the only mechanism to combine parts of a program
into a whole was the “use” primitive operator for loading source files.55

The next major version of the modules proposal was embodied in the paper “Modules for Standard
ML” byMacQueen, which was first published in the Polymorphism newsletter [1983b], with a revised
version later appearing at the 1984 Lisp and Functional Programming Conference [MacQueen
1984]. This proposal was a detailed development of MacQueen’s August 1983 design. It still viewed
modules in terms of declarations and the environments they produced (still called instances) based
on antecedent instances providing the context environment in which the declaration is evaluated.
The environment types, called interfaces in the first proposal, are called signatures in this version.
A draft of this second modules proposal was available for discussion at the June 1984 meeting and
MacQueen gave a tutorial on the proposal at the beginning of the meeting.

The following new ingredients were added in this second module proposal:
• An instance (module) can contain other instances as components, thus forming a hierarchical
structure of nested instances. This feature was to ensure that instances can be “closed;” i.e.,
any type occurring in the instance’s signature is defined within the instance. Instances were
declared using the instance keyword.

• Signature declarations were included, which allow a name to be bound to a signature.
• Module declarations were abstracted with respect to a number of instance parameters provid-
ing the context in which to evaluate the declaration. The instance parameters have specified
interfaces and, thus, all modules were parameterized; i.e., all modules are functors in the later
module terminology.

• Instances were created by applying modules to argument instances that satisfied the signa-
tures of the corresponding formal parameters. This was called “instantiating” a module.

• The conventional dot notation was used for accessing components of an instance.
• Module instantiation was generative for datatypes defined in the module. That is, if a module
contained the definition of a datatype, then each instantiation of the module contained a
new version of that datatype distinct from that type component in any other instance of the
module.

• Modules could contain simple type definitions (later called type abbreviations). Such type
definitions have the same meaning in all instances of the module; i.e., such type components
are not generative.

• If the body of a module involved creation of mutable state (typically ref values), then each
module instance has its own, private mutable state. In other words, stateful declarations were
also “generative,” but in a dynamic rather than static sense.

• A requirement of coherence, or sharing of inherited types between instances, could be
enforced by a new form of declaration appearing in the body of a module, called a sharing
declaration.

The proposal noted that the analogue of type checking a module instantiation would involve
a process called signature matching that compares the signature of an actual argument instance

55Milner and Burstall discussed possible elaborations of the idea of specifications around the end of June, 1983. These
included having a compiler produce (infer) the outward specification of a file containing declarations [Milner 1983b].
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with the signature of the formal parameter. This process allowed for polymorphic values and
constructors to be specified and for such components to be used as polymorphic identifiers in the
body of the module.

For programming convenience, several derived forms or shortcuts were defined, such as:
• Direct instance definitions for eliminating the definition of a module that will have only a
single instance.

• Inheritance declarations for designating certain parameters as instance components of the
current module.

• Opened instances for giving shortcut access to components of an instance, in both signatures
and modules.

• Views for providing linguistic support for “coercing” an instance to a restricted signature
(e.g., to hide components).

Finally, a section about Foundations briefly discusses a connection between signatures and
existential types, with reference to Martin-Löf type theory and an early version of John Mitchell
and Gordon Plotkin’s work on the connection between type abstraction and existential types [1988].

At the June 1984 Standard ML design meeting [MacQueen and Milner 1985], various changes to
the module proposal were discussed and some were adopted. Milner had prepared a proposal for
an alternate syntax for modules [Milner 1984c] a couple of weeks before the meeting. This note
was discussed and several of its suggestions were adopted.

One suggestion was to replace the term (and keyword) instance with structure, perhaps suggestive
of “environment structure,” although also suggested by the use of the term “mathematical structures”
like algebras, rings, vector spaces, etc., in mathematics (universal algebra in particular). The term
module was retained for the generating functions (abstracted declarations) that when applied
produce structures.

In the proposal draft, sharing declarations had belonged in module bodies, but following Milner’s
suggestion, it was agreed that it would be better to have them occur in signatures.Module parameters
would be considered as a single signature withmultiple parameters specified as instance components
within this signature and any necessary sharing specifications among components would occur
within the parameter signature.

Another change was to allow free references to types, structures, etc. in a module, with these
being interpreted by reference to a global pervasive environment. This environment would bind
common predefined types like int, bool, list, and their associated primitive operations and
exceptions.

Correspondence and the exchange of notes, questions, and clarifications on the module system
continued through the remainder of 1984 and up to the May 1985 design meeting, which was
a somewhat more elaborate affair organized like a workshop.56 Once again the first day started
with a session discussing the modules proposal and the discussion continued the next morning. A
major issue was what it meant to “infer” the signature of a structure, and whether such an inferred
signature could actually be written down in the signature syntax. MacQueen used the term full
signature to refer to the inferred signature, which could consist either of all the information that is
expressible in the syntax (with sharing specifications) or the internal static information is generated
by the compiler (which is the complete static description, but it might not be possible or convenient
to express it in the signature syntax).

The next full draft of the module proposal appeared in October, 1985 in the Polymorphism newslet-
ter [MacQueen 1985b] and also in the Edinburgh LFCS Techreport ECS-LFCS-86-2, accompanied by

56And could possibly be considered the first of the long-running series of ML Workshops that continue to this day, though
it was called a design meeting in the invitation.
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a new version of the Core language proposal [Milner 1986] and Harper’s I/O proposal [1986]. This
version represented the state of the modules design prior to serious work on the formal Definition,
in other words, the final draft of the informal design.
But this was not the final form of the module system, since further revisions, discussed below,

resulted from the process of formal definition of the whole language.

5.3 Modules and the Definition
The module system was further developed and refined through the process of formally defining it
as part of the work on the Definition, during the period running from 1986 through 1989, when the
Definition was sent to press. The module system was also affected by further evolution of the Core
language, such as the treatment of exceptions as pseudo-constructors for the exn type [Appel et al.
1988]. The last six chapters of the Milner and Mads Tofte’s Commentary on Standard ML [1991]
describe how the module design was formalized in the Definition.

5.4 Module Innovations in Version 0.93 of SML/NJ
Version 0.93 of the Standard ML of New Jersey compiler [Appel and MacQueen 1991] (released in
February 1993). included three significant enhancements of the module system that went beyond
the design of the Definition.

• Higher-order functors. This was achieved simply by allowing functors to be components of
structures. This required the addition of functor signatures for specifying functor components
of structures. Syntactic support included curried functor definitions. This change was based
on some theoretical work by MacQueen and Tofte [1994] and an implementation design by
MacQueen and Crégut [1994].

• Definitional type specifications in signatures. This feature filled an important gap in the
expressiveness of signatures and also allowed some type sharing specifications to be expressed
more naturally. It anticipated Harper and Mark Lillibridge’s translucent signatures [1994] and
Xavier Leroy’s manifest types [1994].

• An alternate abstraction keyword for declaring structures, where a (required) signature
would be by “opaque” to type information, thus providing for a way to inplement abstract
types using structures. Thus, if the signature S specifies a type component as type t, and a
structure is declared as abstraction M : S = <structure expression>, the component M .t is
abstract. This feature partially anticipated opaque signature ascription (M :> S) in theDefinition
(Revised) (see below). It was also proposed in MacQueen’s 1985 module design [1985b].

5.5 Module Changes in Definition (Revised)
The Definition (Revised) involved three major changes in the design and semantics of modules.

• The elimination of structure static identities. This weakened the notion of structure sharing
to mean only that corresponding type components of structures would share. In other
words, structure sharing became merely an abbreviation for a set of implied type sharing
constraints. The main motivation for this change was to simplify the Definition by eliminating
approximately three pages of rather complicated machinery that was required to handle the
original strong treatment of structure sharing. This involved some loss of expressiveness
that could be partially compensated for by introducing datatypes whose only purpose was to
distinguish structures.

• Type specifications could include definitions (as in SML/NJ 0.93). In addition, type definitions
could be applied to existing type specifications within signatures with the “where type” clause.
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This feature was similar to the translucent types of Harper and Lillibridge [1994] and the
manifest types of Leroy [1994].

• Opaque signature ascription, using the notation “M :> S,” where simple type specifications
like “type t,” when matched, produce a new abstract type.

Unfortunately, the definitional type specification was left somewhat incomplete because of the lack
of a corresponding feature for structures, which would allow bulk definitional specs for all type
components of a signature. This feature was added in a later version of SML/NJ.
The higher-order functors introduced by SML/NJ were considered too radical and untested a

change, and did not make it into the Definition (Revised). There has been further work on the
semantics and implementation of higher-order module systems has by Claudio Russo [1998],
Dreyer, Russo, and Rossberg [Rossberg 2015; Rossberg et al. 2015], and by George Kuan and
MacQueen [Kuan 2010; Kuan and MacQueen 2010].

5.6 Some Problems and Anomalies in the Module System
The SML module system was a major innovation of the language design and had no well-tested
analogues in other languages, thus it is not surprising that some unexpected issues arose during
the design and later in the development of the Definition. Here are a couple notable examples.
(1) The issue of type inexplicitness, which involves “inexplicit” structures, where “anonymous”

or unnameable types appear in the inferred signature of a structure. Here is an example of an
inexplicit structure S:

functor F ( X : sig type t val x : t end ) = struct

val x = X . x
end

structure S = F ( struct datatype t = A | B ; val x = A end ) ;

The problem in this example is that S .x has type X .t, but this type path is only in scope within
the body of the functor F. After the definition of S that type exists, but we have no way to
name it. This is an odd situation, but benign.
Here is another example not involving functors.57

structure S = struct

local

datatype t = A | B

in

val x = A

end

end

This phenomenon (types or type constructors that exist statically by are unnameable in a
particular context) need not be a problem for implementations, but may be problematic for
formal static semantics.

(2) The issue of redundancy between datatype specifications in signatures and the corresponding
datatype definitions in structures. The HOPEmodule proposal of 1981 had a potential solution
to this problem in its “datarep list is free” declaration form. This is mainly a matter of
convenience.

(3) There are other ways in which the module system is lacking fairly obvious and potentially
convenient features. One such feature is parameterized signatures (signature functions taking

57Note that this example can be written without modules by just using the local declaration form.

Proc. ACM Program. Lang., Vol. 4, No. HOPL, Article 86. Publication date: June 2020.



86:48 David MacQueen, Robert Harper, and John Reppy

a structure as a parameter). Work by Norman Ramsey, Kathleen Fisher, and Paul Govereau
explored an number of these design possibilities [2005].

5.7 Modules and Separate Compilation
While the SML module system provides strong linguistic support for structuring programs into
components with well-defined interfaces, the language design does not address the question of
separate compilation. Instead, the Definition just specifies a program as being a linear sequence
of top-level declarations. Ideally, if a program is divided in to separate units of code, it should
be possible to edit and compile individual units without having to recompile the whole program.
The challenge is that compilation units may have dependencies on other units; in the case of
Standard ML, these dependencies can be on both the interface and the implementation of other
units. Implementation dependencies arise because of the translucence of SML signature matching,58
but can also arise from compiler optimizations, such as cross-module inlining.
Early in the design of the Core language, Milner explored the idea of including a specification

directive that would allow one to specify identifiers that are used but not defined, which in turn
would allow “precompilation” (Milner’s term) of code [1983c, Section 4.3]. While these directives
did not make it into the final design of SML, the idea of explicitly closing a compilation unit over its
dependencies was the basis for the so-called fully functorized approach that was desribed by Tofte
in a tutorial on programming in SML [1989]. In this approach, one organizes code into fully-closed
functors59 and uses functor application to “link” the final program. Since each module is explicitly
parameterized over any dependencies, it can be compiled in any order with respect to the other
implementation modules in the program. Furthermore, if a change is made to one module that is
not reflected as a change in its signature, then it can be recompiled without having to recompile any
other module. While this approach solves the dependency problem, it does not scale well to large
systems.60 Furthermore, the approach breaks down for compilers that implement optimizations,
such as functor-application specialization or cross-module inlining.
As SML started to be used for more and larger systems, the need for a better compilation story

was obvious. This need led to a number of efforts to define and implement separate compilation
mechanisms on top of SML. One early approach, which was collaboration between the SML/NJ
implementors and the Fox project at CMU provided a form of incremental (or cut-off ) recompi-
lation [Appel and MacQueen 1994; Harper et al. 1994]. In this implementation, if a module was
modified, its antecedents in the dependency graph would not have to be recompiled. Furthermore,
when a module is recompiled, if its exported interface61 does not change, then its dependents do
not have to be recompiled. This mechanism was used by the SML/NJ system for several years, but
was eventually replaced by Mathias Blume’s Compilation Manager, which provided a much richer
set of build tools [Blume and Appel 1999].
Translucent signatures give rise to one form of implementation dependency, but some com-

pilers include much more information in the exported signature of a compiler. The ML Kit com-
piler [Birkedal et al. 1993] is an example of such a compiler, which includes information about
memory regions in the exported interface (see Section 9.2.3 for more details). To support separate
compilation for the ML Kit compiler, Martin Elsman developed an approach for statically evaluating

58The problem with implementation dependencies via translucent signatures was avoiding in Caml Special Light by only
supporting opaque signature matching [Leroy 1994].
59Not counting free references to types and operations from the pervasive environment.
60The programmer must manage dependencies as explicit functor parameters with sharing constraints, which can require
many extra lines of code per module for large systems.
61The exported interface includes the module’s signature as well as any additional semantic information that the compiler
might propagate.
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module-level constructs to produce residual core-level code [1999a; 1999b]. He also used a cut-off
compilation mechanism similar to that used in SML/NJ.

In addition to these extra-linguistic separate compilation mechanisms, there have been languages
defined on top of SML for building libraries and applications. These lanauges include the ML Basis
system [Cejtin et al. 2004] and SMLSC [Swasey et al. 2006a]. These languages provide mechanisms
to manage separate compilation, including supporting hierarchies of compilation units, visibility
control, and other features. The ML Basis system was developed for the MLton compiler, but it has
been adopted by other SML implementations.

Unfortunately, although there have been many interesting solutions to the separate compilation
problem, these solutions have all been tied to a specific implementation. Aswe discuss in Section 8.11,
the lack of standardization in this aspect of the language has been an impediment to portability.

6 THE DEFINITION OF STANDARD ML
Unusual for a practical programming language, StandardML has amathematically rigorous definition
that is both amenable to analysis and suitable as a guide to implementation. This formal definition
was, from the beginning, one of the primary goals of the language design project.

The Definition of Standard ML (or “Definition” for short) was developed through a series of
preliminary drafts from the summer of 1985 to the end of 1989, with the final version being
published by MIT Press in 1990 [Milner et al. 1990]. The Definition was revised over the period
1995–1997 to correct mistakes, to simplify both the language and its formalization, and to improve
the capabilities of the module system, and was also published by MIT Press [Milner et al. 1997].62

6.1 Early Work on Language Formalization
Robin Milner once posed the question:

What does it mean for a programming language to exist?
The traditional answer to this question is that there is an implementation of the language and that
the language is defined by the behavior of this implementation. There may also be a language
manual or book that describes the language from the point of view of programmers, but its
descriptions using prose and example code will typically be incomplete and ambiguous in places.
In the case of commercially successful or important languages, there may be an after-the-fact
standardization process that produces a large, but not formally precise, description of what the
language is supposed to be, abstracted from one or more existing implementations. A major theme
in the British programming research culture going back to Christopher Strachey was that this was
not good enough, and that one should strive to achieve mathematical rigor in our understanding of
what a programming language is and how programs written in them behave. Thus an outstanding
characteristic of the Standard ML language design was that it presupposed that the language would
have a rigorous and complete formal definition and that the creation of this definition would be an
integral part of the design process.

In the early 1960s, a research community developed, mainly in Europe, that was concerned with
providing precise, formal definitions of programming languages. Early actors in this community
included John McCarthy (Lisp, ALGOL 60), Strachey (CPL), Peter Landin (ISWIM), and members of
the IFIP Working Group 2.1 (ALGOL) and the IBM Laboratory Vienna. The community organized
the inaugural conference in the field, on Formal Language Description Languages, which was held
in September 1964 [Steel, Jr. 1966].63

62The names SML’90 and SML’97 are sometimes used to distinguish between these two versions of the language definition.
63See Astarte’s Ph.D. dissertation for further details [2019, Chapter 4].
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McCarthy had already provided a definition of Lisp in the form of a definitional interpreter [1960].
The IBMLaboratory Vienna, led byHeinz Zemanek, developed a definitional interpreter for PL/I over
the period 1965-1967, using formalisms that became the Vienna Definition Language (VDL) [Lucas
et al. 1968]. Strachey was developing concepts for language description in the mid 1960s [1967] that
would evolve into the denotational semantics of Dana Scott and Strachey [1971] toward the end
of the decade. Landin used the lambda calculus as a tool for describing ALGOL 60 [1965a; 1965b].
Adriaan van Wijngaarden and colleagues developed a formal description of ALGOL 68 [Lindsey
1996; Mailloux et al. 1969; van Wijngaarden et al. 1969] using two-level grammars.

The development of the PL/I definition by Zemanek’s group at the IBM Laboratory Vienna began
after the original informal design by a committee consisting of IBM engineers and customers (from
the SHARE user group) was complete. Zemanek’s group took a definitional approach that was
influenced by earlier work by McCarthy [1963] and Landin [1964]. This effort resulted in the Vienna
Definition Language (VDL) [Lucas et al. 1968] description of PL/I, which was basically a definitional
interpreter focused on the dynamic semantics of the language.64

The ALGOL 68 design camewith a partial formal description using enhanced syntactic techniques
(two-level grammars), but this formalism did not cover dynamic semantics and it provided a baroque
and incomplete specification of the type system and other context-sensitive aspects of the language.
There was a strong reaction to the complexity of this definition, leading to a breakup of the IFIP
Working Group 2.1 that was responsible for ongoing development of the ALGOL language [Astarte
2019, Section 7.1].

The Standard ML definition differs from these earlier efforts in several respects.
• The formal definition was a first-order goal of the original designers of the language and (a
subset of) those designers developed the formal definition themselves.

• The formal definitionwas intended to support reasoning about themetatheory of the language
(e.g., type soundness and the determinacy of the dynamic semantics).

• By the early 1980s, more mature and suitable formal definition techniques were available that
were not available to earlier designers, such as Structural Operational Semantics [Plotkin
1981, 2004] and Natural Semantics [Kahn 1987].

One problem with designing a language and then later formalizing it is that the informal design
may explicitly or implicitly involve features that are difficult to describe formally (this obviously
depends in part on the choice of the formalism chosen), leading to either failure of the formalization,
incomplete definition, or excessive complexity in the formal definition.65
In the case of Standard ML, the design of the language was not considered finished until the

definition was completed. A much tougher criterion for being finished would be to have certain
specified metatheory theorems proved. In effect, there are two levels of design: the language itself
and the formal definition and its formalisms and techniques. Proving metatheoretical results for a
real language is also a major challenge, because of scale.

Ideally, two goals ought to be satisfied before the full completion of a language design:
(1) the development of a formal definition with metatheory, and
(2) at least one complete, debugged, tested implementation.

Serious problems in the first goal might require revising the language and/or the formal definition,
while serious problems in the second require revision of the language design, which would force
revision of the formal definition. A number of programming language designs, such as PL/I,
ALGOL 68, and Ada, proved very challenging to implement given the state of compiler technology
64Astarte’s Ph.D. dissertation gives a detailed recounting of the history of the PL/I definition [2019, Chapter 5].
65Conversely, tailoring a language design to make formal definition more convenient might lead to awkward or unnatural
design choices, which is a danger to be taken into account in choosing the formalism.
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at the time, which resulted in long delays before adequate implementations became available. In
the case of Standard ML, several implementations were developed during the design period of 1983
to 1989 — including Edinburgh SML [Mitchell and Mycroft 1985], Poly/ML [Matthews 1989], and
Standard ML of New Jersey [Appel and MacQueen 1991] — during the design period of 1983 to
1989, and experience with these implementations had some influence on the design and definition
of the language.

6.2 Overview of the Definition
The Definition defines the following aspects of the language:

(1) Its concrete syntax, given by a context-free grammar that defines the syntactic categories of
the language as sets of strings, from which the abstract syntax may be inferred.

(2) Its static semantics, or statics, which defines context-sensitive constraints on programs, such
as typing and variable scoping, that guarantee that programs are well-formed and sensible.

(3) Its dynamic semantics, or dynamics, which defines how to execute a program relative to a
dynamic environment and a store of mutable data structures and exception constructors.

The definition of the grammar of the language, given in Sections 2 and 3 of the Definition,
follows the practice used in LCF/ML [Gordon et al. 1979, Section 2.2]. The concrete syntax is
described using a BNF-like notation extended with a “...” notation for repetitive sequences, “L”
and “R” annotations to indicate left or right associativity, and a convention that the precedence of
constructs is determined by the order of the productions. The latter property is specified by the
statement

The constructs are listed in order of decreasing binding power.

But the meaning of “binding power” is left undefined. There is also a general rule that the extent
of iterated constructs should run as far to the right as possible.66 Because of the annotations and
the precedence convention, the grammar can dispense with phrase classes (nonterminals) used
only to deal with issues of precedence, associativity, and iteration, leaving only phrase classes that
express the logical components of programs (e.g., expressions, declarations, types), so it is possible
to regard the grammar as also serving as the abstract syntax of the language, which is how it is
used in the inference rules making up the core of the Definition.
The language was factored into a Core language and a Module language, each with its own

static and dynamic semantics, with a relatively clean interaction between the semantics of the
two levels. The Core language was further divided into an essential, minimal set of constructs
(the Bare language) from which the rest of the Core constructs could be derived. For instance, the
conditional-expression form

if e1 then e2 else e3

was defined to be syntactic sugar for the case expression

case e1 of true => e2 | false => e3

which in turn is modeled by an application of a clausal function to an argument:

( fn true => e2 | false => e3 ) e1

Hence the semantics only had to deal with constructs of the Bare language.

66This rule means roughly that shift/reduce conflicts should be resolved in favor of shift.
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6.3 Early Work on the Semantics
While Michael Gordon and Milner had written, but not published, a denotational semantics for
LCF/ML in the late 1970s [Milner et al. 1990, Appendix E], that approach was abandoned for the
definition of Standard ML — instead, an operational approach was adopted. While the reason for
this choice is lost to the sands of time, it is likely because of the practice of using operational
techniques that had been growing in Edinburgh in the late 1970s and early 1980s as exemplified
by Gordon Plotkin’s famous notes on Structural Operational Semantics (SOS) [1981; 2004]. These
operational approaches had several advantages over denotational techniques.

• They can handle concurrency more simply and elegantly.
• They can be used to express both dynamic and static semantics of a language (as in the case
of Standard ML).

• They are amenable to proving metatheoretic results such as type soundness.
The eventual semantics of SML (both static and dynamic) were expressed using the style of inference
rules described in Section 4.1. This choice appears to have been influenced by the use of evaluation
semantics in PerMartin-Löf’s influential paper [1982] and by Gilles Kahn’s Natural Semantics [1987].
Recall that these rules are used to prove judgments of the general form

C ⊢ P ⇒ M

where C is a context (usually an environment-like structure), P is a phrase of the language, and
M is the semantic representation of the meaning of P in the context B. For static semantics, the
meaning is a semantic object, which might be a type, in the case where P is an expression, or
a much more complicated construct in the case where P is a functor, for instance. In any case,
the semantic object is intended to capture the static information produced by analysis of the
phrase. The process of translating a phrase to a semantic object representing its static content is
called elaboration. In a dynamic semantics, the translation produces a representation of “values”
or dynamic “environments” that result from the evaluation of the phrase. In practice, a natural
semantics for dynamics (also known as an evaluation semantics) is usually fairly similar to an
interpreter or can easily be reformulated as interpreter.

The development of the semantic description of Standard ML began in the spring of 1985 (if not
earlier) with a proposed dynamic semantics written by Milner [Milner 1985a].67 That summer, after
Robert Harper arrived in Edinburgh and the third design meeting was held in May, Harper began
work on the first version of a static semantics, focusing on the module system, since type checking
for the Core was assumed to be mostly covered by Milner’s previous work on polymorphic type
inference.68
In response to Harper’s draft, Milner produced an alternate semantic model that he called

“Webs” [Milner 1985c]. The abstract and minimal Webs model was narrowly focused on describing
the effect of structure-sharing specifications in terms of trees of paths with congruence relations. A
web is a pair (T ,C), where T is a tree (a prefix-closed set of paths, where a path is a sequence of
labels), and a congruence relation is an equivalence relation on paths of a tree that respects path
extension (i.e., if C is a congruence relation on paths of a tree and and C(p1,p2) then C(p1.a,p2.a)
if p1.a and p2.a are also paths in the tree). The tree represents the substructure hierarchy of a
structure and the congruence relation represents sharing among components of the tree (i.e.,
substructures). Harper had used a notion of “timestamps” to uniquely identify structures for the

67It is uncertain when Milner began work on this, since this document from April, 1985 is labelled as the “3rd Draft.”
68Harper also started implementing the module system that summer as part of the project to retrofit the Edinburgh ML
compiler as a Standard ML compiler.
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m,n ∈ Names
M,N ∈ Fin(Names) i.e., finite subsets of Names

E ∈ Env = StrId
fin
→ Str

S or (n, E) ∈ Str = Names × Env
Σ or (N )S ∈ Sig = Fin(Names) × Str

[strid, Σ, strexp,E] ∈ Fun = StrId × Sig × StrExp × ProgEnv
F ∈ FunEnv = FunId

fin
→ Fun

G ∈ SigEnv = SigId
fin
→ Sig

E or (M, F ,G, E) ∈ ProgEnv = Fin(Names) × FinEnv × SignEnv × Env

Fig. 1. Semantic Objects for ModL [Harper et al. 1987b, Table 1], where StrId, FunId, and SigId are (resp.)
structure, functor, and signature identifiers, and Names is a set of names used to uniquely identify structures.

purpose of sharing,69 and Milner’s Web model avoided this device by representing sharing directly
as congruences. But congruences were not a very practical representation, and modeling functors
was rather complex. Also, there were no types in the minimal language, so the issue of how sharing
would interact with type checking was not addressed.

The next step towards a static semantics for modules was the paper “A type discipline for program
modules” [Harper et al. 1987b], which was presented at the TAPSOFT conference in March 1987.
This paper gave a static semantics for a simplified module language, called ModL, with structures,
functors, and signatures with sharing, but no types or expressions. The paper followed Harper’s
original idea of representing sharing via timestamps (or unique static identifiers), which the paper
called “names.”70

Table 1 of the paper defined the semantic objects for the model; we reproduce it here in Figure 1.
The most interesting objects are the environments, structures, signatures, and functors. A structure
S is represented by a name n that statically identifies that structure for the purpose of sharing,
paired with an environment E that gives the components of the structure. A signature of the form
(N )S consists of a structure, some of whose names, N , (i.e., the name of the structure itself and of
some of its component substructures) are bound, in the sense that they can be instantiated when
matching the signature with a compatible structure. A functor object of the form [strid, Σ, strexp,E]
represents a closure (with respect to a top-level or program environment E) of a lambda abstraction
over strid with type Σ and body strexp. The closure environment binds any free structure or functor
identifiers contained in the body strexp.

Figure 2 of the TAPSOFT paper gives the inference rules that define the elaboration of structure-
level declarations to environments and structure expressions to structure, and Figure 3 gives rules
for elaborating (signature component) specifications to environments, signature expressions to
signature objects, and programs to program environments. We survey a few of the rules from
Figure 3 here; the interested reader is directed to the paper for more details.

When elaborating a basic structure expression to produce a structure object, we can freely choose
any name to identify it, with the constraint that it is a “fresh” name not previously used (i.e., not in
the program environment’s “reserved” name set). The interesting aspect is how names are chosen
69Harper’s draft semantics has been lost, but we know that it used timestamps because of a comment Milner makes in the
Webs paper.
70The “name” terminology, meaning internal static tokens used for determining static equality or sharing, is rather
unfortunate, given the many possible meanings for the term in programming language theory and implementation. In
SML/NJ for instance, the terms “stamp” or “uid” are used for this concept.
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when elaborating signatures. The names associated with the structure part of a signature object
are completely arbitrary in the rules

E ⊢ spec ⇒ E1

E ⊢ sig spec end ⇒ (∅)(n, E1)
[Harper et al. 1987b, Rule 9]

and the set of bound names is determined arbitrarily after the basic signature structure.

M, F ,G, E ⊢ sigexp ⇒ (N )S n < M

M, F ,G, E ⊢ sigexp ⇒ (N ∪ {n})S
[Harper et al. 1987b, Rule 11]

But for those names to work in the context of a larger elaboration, they must have been chosen
to satisfy all sharing equations. Furthermore, the set of bound names has to have been chosen to
produce a principal signature, which means that all the names that are not constrained by sharing
to be identical to a fixed name in the context should be included in the bound set.

E ⊢ sigexp ⇒ Σ Σ principal for sigexp in E

E ⊢ signature sigid = sigexp ⇒ (∅, ∅, {sigid 7→ Σ}, ∅)
[Harper et al. 1987b, Rule 14]

In effect, there appears to be a lot of freedom in choosing names in signatures and choosing which
names should be bound, but some choices will not “work,” that is, will not allow a valid derivation
from the rules to be constructed, so we nondeterministically use some set of choices that happen to
“work,” and there will in general be an infinite number of these successful choices. An elaboration
algorithm, on the other hand, is likely to use a strategy to deterministically make the right choices
(as in the case of polymorphic type inference, where the typing rules require correct “guesses” to
make a derivation work).

The ModL language studied in the TAPSOFT 87 paper is degenerate because of the lack of types
and expressions means that there is no type checking, and the whole purpose of sharing equations
is to make sure that type components of structures will match during type checking. Nevertheless,
the approach served as a test run for the more complete static semantics of the whole language in
the Definition.

6.4 The Definition
Building on the TAPSOFT 87 paper, the completion of the Definition required adding value-level
types, expressions, and declarations. The starting point was the description of Standard ML given
by the Edinburgh technical report ECS-LFCS-82-6 [Harper et al. 1986], which contained three
language proposals: “The Standard ML Core Language (Revised),” which was Milner’s final draft of
the Core language description; “Standard ML Input/Output” by Harper, dating from June 1985; and
“Modules for Standard ML” by David MacQueen, dating from October 1985. Before the first version
of the Definition was produced, the Core language design was amended, to include the following
changes [Milner 1987]:

• the notation for numeric record labels was changed and their use was liberalized,
• record selector functions were introduced,
• optional withtype clauses were added to datatype declarations,
• equality type variables were introduced and the class of equality types that could instantiate
them was defined, and

• the polymorphic assignment operator “:=” was added, with the technical restriction that it
could only be instantiated to monotypes in expressions.
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With these changes, the first version of the Definition, titled “The Semantics of Standard ML
(Version 1)” (later versions were titled “The Definition of Standard ML”) was published in August
of 1987 as an Edinburgh technical report [Harper et al. 1987a].
The second version appeared in August 1988 [Harper et al. 1988]. In addition to technical

corrections, the notable changes made in this version were
• a bibliography and index were added,
• exceptions were made constructors [Appel et al. 1988],
• Section 8 on Programs and the interactive top level was added,
• derived forms for functor definition and application (structures as parameters) were added,
• a section on “Signature Matching” was added,
• imperative type variables were added to allow polymorphic references, and
• restrictions were placed on the typing of polymorphic references and exceptions.

A new historical appendix: “The Development of ML” was was also added in Version 2.
The third version appeared as a technical report in May 1989 [Harper et al. 1989]. This version

made relatively few changes relative to Version 2, with themost significant being that that signatures
must be type explicit, which means that any occurrence in a signature of a type specified in the
signature must be in the scope of that specification, which basically prevents pathological signature
definitions that contain multiple specifications of a type identifier. An addendum was added to the
beginning of this tech report in January 1990 specifying differences between it and the published
version of the Definition. The changes introduced in the published version are mostly minor and
technical, except for a major revision of the description of principal signatures and equality principal
signatures are defined [Harper et al. 1989, Section 5.13].71

The version of the Definition published by MIT Press [Milner et al. 1990] consists of the following
chapters and appendices:

1 Introduction (2 pages)
2 Syntax of the Core (7 pages)
3 Syntax of Modules (6 pages)
4 Static Semantics for the Core (15 pages, 52 rules)
5 Static Semantics for Modules (15 pages, 50 rules)
6 Dynamic Semantics for the Core (11 pages, 56 rules)
7 Dynamic Semantics for Modules (6 pages, 36 rules)
8 Programs (3 pages, 3 rules)
A Derived Forms
B Full Grammar
C The Initial Static Basis
D The Initial Dynamic Basis
E The Development of ML

This structure illustrates the factoring of the definition between the Core language (actually the
minimal Bare language) and the Modules language. For each of these languages there is a division
between static and dynamic semantics. The Definition did not give a complete description of the
syntax of the language, but rather spread the syntax across multiple chapters and appendices.
Lexical issues were addressed in Chapter 2, and the bare syntax of the language was covered in
Chapters 2 and 3. The syntax of the Bare language was extended to the full language via a collection
of derived forms that were defined in Appendix A. Lastly, the full grammar for the Core (but not
modules) was given in Appendix B. In addition to being spread out over multiple chapters, the

71These concepts are explained in detail in the Commentary on Standard ML [Milner and Tofte 1991, Chapter 11].
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grammar contained a number of (benign) ambiguities. It is ironic that the focus on using the syntax
as an abstract syntax for defining the language’s semantics led to the less rigorous description of
the concrete syntax. Appendices C and D define the Initial Basis, a relatively sparse environment of
predefined and pervasively available types, values, and functions (see Section 8 for more details).
At the heart of the semantics are the inference rules. These rules are fairly evenly divided

among the four categories: static Core, static Modules, dynamic Core, and dynamic Modules. In the
remainder of this section, we take a closer look at some of the technical aspects of the Definition,
which the casual reader may wish to skip

As shown in Figure 1, the ModL language from the TAPSOFT 87 paper had only nine forms of
semantic objects. In the case of the Definition, with the addition of types, values, and exceptions,
there were now 27 forms of semantic objects for just the static semantics of the Core [Milner et al.
1990, Figure 10, Section 4.2] and Modules [Figure 11, Section 5.1]. For instance, the representation
of types required the following semantic objects:

θ or Λα (k )τ ∈ TypeFun =
⋃

k≥0 Tyvark × Type
(θ ,CE) ∈ TyStr = TypeFcn × ConEnv

where τ ranges over (representations of) type expressions, and CE ranges over constructor environ-
ments, which map Con (data constructor) identifiers to their types. A TypeFun object represents a
simple function over types defined by lambda-abstracting a finite sequence of type variables over a
type expression. Thus a TyStr can model a type constructor defined by a simple type declaration
such as “type (' a ,' b) t = 'a ∗ 'b,” with a representation of the form (θ, ∅), where θ is roughly
Λ(α, β).(α × β) and an empty constructor environment. On the other hand, a datatype d would be
represented as a TyStr of the form (Λ().n,CEd ) where n is a unique name identifying the datatype
and CEd specifies the types of the data constructors for d . Thus the two forms of type constructors
(simple and datatype) use the same TyStr representation, but each is degenerate in its own way
and there are no type constructors that have both a nontrivial θ component and a nonempty CE.72

Semantic objects for structures and signatures are similar to the corresponding objects for ModL.
A structure object (Str) is a pair of a name (unique identifier) and an environment, such as (n, E),
but in this case the environment part is a compound 4-tuple of environments, E = (SE, TE,VE, EE)
where SE is a structure environment mapping structure variables to structure objects, TE is a type
constructor environment mapping type constructor identifiers to TyStr objects, VE is a variable
environment mapping a set of variables, data constructor identifiers, and exception constructor
identifiers to their, possibly polymorphic, types (represented as TypeScheme objects), and finally
EE is an environment mapping exception constructor identifiers to their type. We need these four
kinds of environment to represent the four kinds of components that can be contained in a structure
in Standard ML.

A signature object is now a Str together with a finite set of bound names, but now names come
in two flavors: TyName and StrName, so there are actually two name sets:

N or (M,T ) ∈ NameSet = StrNameSet × TyNameSet
Σ or (N )S ∈ Sig = NameSet × Str

As in ModL, the NameSet identifies components of the body structure that are bound and available
to be instantiated in the process of matching a structure against the signature. The Commentary
uses the term flexible for bound names (and rigid for free names).
It turns out that there are a number of ways that structures or signatures can be ill-formed, so

there are a number of attributes that distinguish the good module objects:

72If this seems a bit baroque, no one could argue the point!
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• consistency (Section 5.2): corresponding (static) components of structures that share also
share (have the same “name” or are equal),

• well-formedness (Section 5.3): components of a rigid structure (having a free name) are also
rigid,

• cycle-freedom (Section 5.4): the name of a structure does not occur as the name of a compo-
nent,

• admissible (Section 5.5): a structure is admissible if it is consistent, well-formed, and cycle-free,
and

It is the case that in any successful derivation of a judgement from the inference rules, all the
semantic objects occuring in the derivation will be admissible.
When deriving the semantic representation of the structure part of a sigexp in a given context,

the inference rules do not determine which names should be bound. Therefore, the Definition
has a special inference rule that requires the bound names to be chosen to make the signature
principal [Milner et al. 1990, Rule 65]; i.e., to bind as many names as possible, which means any
names that are not rigid because of sharing with rigid structures.73

The inference rules for the static semantics of modules make use of several relations and mecha-
nisms to model features such as signature ascription and functor application.

• Realization: roughly a mapping from bound names to rigid objects, which, when applied to the
Str part of a Sig, produces a rigid Str of the same “shape” as the signature (same component
names).

• Signature instantiation: Σ1 ≥ S2. There is a realization ϕ that when applied to S1 (where
Σ1 = (N1)S1) yields S2; i.e., ϕ(S1) = S2, and the domain of ϕ is a subset of N1.

• Functor signature instantiation: a similar relation for functors and functor signatures.
• Enrichment: S1 ≻ S2. S1 has at least as many components as S2 and where their compo-
nents agree, S1 has more complete information (and similarly for environments and type
constructors).

Given these mechanisms and relations, the notion of signature matching is defined, which specifies
when a structure is compatible with a signature (i.e., when does it satisfy the interface specification
given by the signature). A structure S matches a signature Σ if there exists a structure S ′ such that
Σ ≥ S ′ ≺ S . This means that there is a realization of Σ that can be enriched to produce S . The
realization replaces bound names to match those of S and then extra “stuff” can be added to get
to S . The result of the signature match is the intermediate structure S ′, which will have the same
“shape” as Σ but the same “names” as S .

Signature matching is used in the inference rules to model what happens when a signature is
ascribed to a structure and what happens when a functor is applied to an actual argument.
This discussion is meant to give a rough impression of how the static semantics models the

module system. There are many details worked out through the definition of other semantic
objects (such as functors, which we have not mentioned), and there are 196 inference rules that
specify the details of the modeling. For a much more detailed explanation of the semantics, see the
Commentary [Milner and Tofte 1991].
The dynamic semantics follows the same general pattern, except that phrases are transformed

into objects modeling the values and environments that result from evaluation of a phrase or
program.

73In fact, the requirement is a bit stronger, the bound names must make the signature object equality principal.
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6.5 The Revised Definition
For Milner, the publication of the Definition was the end goal of the Standard ML project, and
he had other topics competing for his attention, mainly his research on the semantics of concur-
rency, including continuing work on process algebras such and his “Calculus of Communicating
Systems” [Milner 1980] and its successors.
But implementations of the language had begun to be available as early as 1985, even before

the design was complete. By the late 1980s there were at least four full or partial implementations
(Edinburgh Standard ML, ML under Unix, Poly/ML, and Standard ML of New Jersey) and a growing
user community. These implementations, plus the availability of early textbooks on the language,
led to a growing user community, which had an interest in the further development of the language
and its implementations.

There were also new language features and capabilities that were being introduced by particular
implementations, as discussed in Section 5.4, or studied by researchers such as Harper and Mark
Lillibridge [1994] and Xavier Leroy [Leroy 1994]. Critiques, such as Stefan Kahrs’s [Kahrs 1993],
pointed out problems with the Definition. In addition, in the background, the ML2000 group had
begun meeting in the early 1990s to explore future evolution of the language or successor designs.
All of these activities created pressure to revisit the design and definition of Standard ML.

The Newton Institute program on the Semantics of Computation took place in Cambridge in
the second half of 1995 and it brought together the four people most involved in the design and
definition of the language, namely Milner, Harper, Mads Tofte and MacQueen (both MacQueen
and Tofte were also involved in implementing SML compilers). It was jointly deemed to be a
good time and opportunity to re-open the issue of revising the Definition. Most of the discussions
about possible changes took place in Cambridge that autumn, with discussion continuing by email
over the next year or so. These discussions eventually led to the publication of “The Definition of
Standard ML (Revised)” in 1997 [Milner et al. 1997].
The major changes in the revised language involved the type and module systems [Milner

et al. 1997, Appendix G]. For the type system, the most important change was the replacement
of “imperative polymorphism” by the “value restriction” as discussed previously in Section 4.4.
Another change was the introduction of datatype replication declarations and specifications, which
fixed a clear flaw in expressiveness.

In the module system, there were three major changes.
• Type abbreviations in signatures: this change endorsed a modification made in SML/NJ 0.93
and explored theoretically by the Harper and Lillibridge [1994] and Leroy [1994], but with a
new “where type” clause for externally specifying such definitional specifications on existing
signatures.

• Opaque signature matching: this feature complemented the above addition to give finer
control of visibility and abstraction via the module system, making abstype essentially
redundant.

• Downgrading of structure sharing: this change weakened the meaning of structure sharing,
which became an indirect form of type sharing.

These changes have been discussed above in Section 5.5. The change in structure sharing was
motivated mainly by the simplification it would produce in the semantics of modules. The total
number of inference rules in the Definition (Revised) was reduced from 196 to 189.
There were other changes that were discussed but were not in the end adopted. The most con-

troversial was probably the idea of eliminating equality type variables and equality polymorphism.
Having already dismissed imperative type variables, this would have left only a single simple form
of type variable, which would have been a significant clean-up of the type system. On the practical
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side, no matter which implementation strategy is used, the problems with polymorphic equality
(discussed in Section 4.5) make it a poor tool in the general case, so its use tends to be limited.

One change that was omitted from the revision was definitional specifications for structures and
a corresponding “where structure” clause for signature expressions. The omission of this feature
meant that there was a proliferation of type-level definitional specifications, in some cases, when
converting code from the old structure sharing style to use the new features. Some implementations
(including SML/NJ) added this feature as a non-standard extension, because of its usefulness.

One external factor that inhibited some changes during the deliberations was that Harlequin, a
local software house, had started a project to build a commercial Standard ML compiler, eventually
released as Harlequin ML Works [Haines 1991]. Although the Standard ML designers had good
relations with the developers at Harlequin, the president of the company, Joe Marx, wrote an
indignant letter to Milner objecting to the prospect of a change in its definition that might affect
his company’s product plans.

7 TYPE THEORY AND NEW DEFINITIONS OF STANDARD ML
Once the Definition was completed at the end of 1989, was the language finished? Was there any
point in further research involving Standard ML? The obvious answer was that Standard ML had
become a living language, because of the Definition, the availability of implementations, and the
existence of an active user community. But there was also an active research community interested
in investigating questions arising from the design and the Definition, and one of those questions
was whether the language or its definition could be improved. Already in the mid-1980s, just
as work on the Definition was getting started, there were new developments connecting type
systems or typed calculi to the foundations of the language, and in particular the static semantics
of modules [MacQueen 1985a]. Over the next twenty years or more, a rich research literature on
the connections between Standard ML and type theory developed. This section surveys some of
important accomplishments of that period, including a complete mechanized semantics in the
Twelf theorem prover.

The biggest challenge was to develop a type theory for program modules. Two major themes
influenced the development: abstract types and modular structure. The two are not independent
and their relation involves the interplay between opacity and transparency of type definitions. One
way of achieving data abstraction is based on John Reynolds’ polymorphic typed λ-calculus [1974],
which was independently discovered by Jean-Yves Girard [1972] in the context of formal logic.

These ideas were extended by John Mitchell and Gordon Plotkin in their influential 1985 paper on
modeling abstract types as existential types [1988]. In their scheme, an expression of an existential
type ∃t .τ , interpreted as an abstraction, is a package of the form abst = ⟨τ ′, body⟩ consisting of a
witness τ ′ for the existentially quantified type variable t and an expression body, with type τ , that
normally implements an interface of operations for t . To use the abstraction in an expression client,
it must be opened using a special let-like construct, “open (t, x) = abst in client.” Abstraction is
enforced by the fact that the identity of the type t is not known in the expression client and the
name t is not in scope outside the open expression, nor may it occur in the type of that expression.
However, for practical uses in modular programming, abstract types as existential types had a
significant flaw: the lowest level modules would have to be opened with the widest scope to be
available to all of their clients. The hierarchy of scopes would therefore be the inverse of the
hierarchy of module dependencies.

This problem was pointed out by David MacQueen, who developed a type-theoretical foundation
for modules [1986] partly inspired by Per Martin-Löf’s work on intuitionistic type theory [1982;
1984]. This type-theoretic semantics used general sums (Σ) and general products (Π), also some-
times called dependent types, to express hierarchy and parameterization in program structure.
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MacQueen’s analysis introduced type sharing specifications to express coherence constraints among
the arguments to a parameterized module (as explained in Section 5.1).
MacQueen’s dependent types avoid the need for an open construct by providing direct access

to the type components of a module, using the familiar “dot notation” (e.g., M .t). But MacQueen’s
approach raises a question: since modules contain both type definitions and definitions of values
that have to be dynamically computed, can the type components of a module M depend on dynamic
execution, which may produce effects like divergence, mutation of state, and the raising of excep-
tions? Harper, Mitchell, and Eugenio Moggi introduced the idea of the phase distinction [1990; 1991],
which establishes the conditions under which the static semantics can be elaborated independently
of the dynamic semantics, thus ensuring that static properties like types are not affected by dynamic
execution at the value level. It turned out that these conditions were not difficult to satisfy and in
fact MacQueen’s module language did satisfy them.74
The typed calculus model presented by MacQueen was further refined by Robert Harper and

Mitchell in the paper “The Essence of ML”[1988] and in an extended version “On the Type Structure
of Standard ML” [1993]. They model the static semantics of both the Core and Module language of
Standard ML using a typed calculus XML, which is based on a predicative version of the Reynolds-
Girard polymorphic lambda calculus (Fω ). They considered whether module sharing equations could
be modeled by Martin-Löf’ equality types [Martin-Löf 1982], but discovered technical problems
with that approach [Harper and Mitchell 1993, Section 9.3].

A problem with MacQueen’s original design of the module system and the type calculi for
modeling its static semantics is that there is no support for type abstraction. The default is that
a type exported from a module (even as mediated by a signature ascription) is fully known (or
“concrete”). The module language provides no mechanism to export a type as abstract, where its
actual definition is hidden. The Core language provides abstype declarations for creating new
abstract types, but it was felt that the module language should also be able to support abstraction
as well. There was also the fact that a type specified as “type t” in a functor parameter signature
was effectively abstract with respect to the body of the functor definition, simply because its
instantiations by potential arguments of the functor were unknown.

The first type theories to add support for abstraction to the module language were developed in a
series of papers by Xavier Leroy from 1990 to 1996 [1990; 1994; 1996], in support of the design of the
OCaml module system, and by Harper and Mark Lillibridge [1994] and in Lillibridge’s thesis [1997]
in an effort to consolidate the existential and dependent formulations of modular structure. Practi-
cally speaking, a new variety of opaque signature ascription (notation: M :> SIG) was added that
made types exported through the signature abstract by default, but this could be counteracted for
individual types by using more precise, “definitional” specifications like “type t = int list” that in-
cluded a definition of the type. Leroy called types exported in this waymanifest types, while Harper
and Lillibridge used the term translucent types. These proposals extended MacQueen’s 1985 fully
opaque “abstraction” declaration to admit type definitions, which MacQueen had, independently of
these theories, developed and implemented in the February 1993 release of SML/NJ (Release 0.93).

The type systems developed by Harper and Lillibridge and by Leroy rely on a delicate interplay
between dot notation, subtyping, and type ascription to enforce abstraction. These mechanisms
were studied by Aspinall [1995] and by Harper and Chris Stone [2000; 2000; 2006], who developed
the theory of dependent singleton kinds to model type abstraction and type definitions in module
systems. For a type to have a singleton kind means that it is equal to the type specified by the
singleton (think of a singleton set, which has one element). Thus, in particular, if a type identifier

74One simplifying factor was that the module system only allowed type projections like M .t on module identifiers, not
allowing projection of types from arbitrary module expressions like F(M ). t.
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is declared with such a kind, it amounts to a type definition. Type-sharing relationships can
be expressed by choice of representative of each equivalence class, assigning singletons of that
representative to each of the other elements of the class. Singleton kinds are a form of dependent
type, albeit one that does not violate the phase distinction. Correspondingly, product and function
kinds are generalized to dependent forms.
In these type systems for modules the use of “dot notation” to access the type components of

a module is limited to a distinguished class of module values, which include paths, or iterated
projection from variables, as in Standard ML. This ensures that type equality is well-defined and
decidable, but, more importantly, it is an expression of the notion of “type generativity” in the
language. In particular any module computation that might incur an effect, such as allocation
of a reference cell, must be bound to a variable before its components can be accessed. Because
bound variable names are subject to implicit renaming to avoid collisions with others, the type
components of a bound module are “fresh” in the sense of being distinct from all other types in
scope. This idea was further developed by Derek Dreyer, Karl Crary, and Harper [2005; 2003], which
accounted for “weak sealing” as it is found in OCaml, and by Daniel Lee, Crary, and Harper [2007],
which was used in the mechanization of the Standard ML definition described below.

7.1 Reformulating the Definition Using Types
In light of these developments it was natural to reconsider the methods used in the Definition to
define the static semantics of Standard ML. This idea was taken up in the late 1990’s by Claudio
Russo [1999a; 1999b; 1998] and by Martin Elsman [1998; 1999a] using similar methods. In particular
they were both concerned to clarify the concept of “type generativity” used in the Definition,
and to consider extensions to the language to support separate compilation, and first-class and
higher-order modules.

A central point of their work is that type-name binding in the Definition is used to express three
separable concepts, parameterization and universal and existential quantification. When properly
distinguished, these concepts may be used to clarify the static semantics. For example, in their
reformulations the static semantics of a functor has the form ∀T .(Σ → ∃T ′.Σ′), in which T is a
provided set of type names, Σ is the signature of the argument structure, T ′ is the generated set of
type names, and Σ′ is the signature of the result. The names in T may occur in both the argument
and result, expressing a form of type dependency, but the names in T ′ may only occur in the
result, being “new” on each application of the functor. Russo proved that the existential quantifier
accurately models type generativity as formulated in the Definition, justifying the reformulation in
these terms.
With this framework Russo and Elsman studied several extensions to Standard ML, including

first-class modules, which are closely related to Mitchell and Plotkin’s existential types, higher-
order modules, which permit functors to take and return other functors, and, most importantly,
separate compilation of program units. As practical validation, Russo’s reformulation was used
in the Moscow ML compiler [Moscow-ML 2014] and Elsman’s was similarly used in the MLKit
compiler [Birkedal et al. 1993].
Because they dealt only with the static semantics of modules, these reformulations are not

suitable for proving metatheoretic properties such as type safety for the language. Later, Andreas
Rossberg, Russo, and Dreyer [2015] extended the statics with a translation into Fω to account for
the dynamic semantics as well. Their approach follows the reformulation described in the next
section, but, rather than providing a type theory for modules, they instead incorporate a translation
based on the phase distinction into the elaboration process.

Proc. ACM Program. Lang., Vol. 4, No. HOPL, Article 86. Publication date: June 2020.



86:62 David MacQueen, Robert Harper, and John Reppy

source 
representation

untyped 
external 

language

typed 
internal 

language

parser statics

dynamics

Fig. 2. Structure of the Type-Theoretic Formalization of Standard ML

7.2 A Mechanized Definition
Shortly after Russo and Elsman’s reformulations of the Definition were published, Harper and
Stone [2000] proposed a type-theoretic interpretation of Standard ML that accounted for both the
statics and dynamics of the language to support both implementation and metatheory. The first
application of the interpretation was to extend the TIL compiler [Morrisett 1995; Tarditi et al. 1996,
2004] to support modules [Petersen et al. 2000; Petersen 2005], and separate compilation [Swasey
et al. 2006a,b].

TheHarper-Stone interpretationwas later refined by Lee et al. [2007] in their mechanization of the
Definition using Twelf [Pfenning and Schürmann 1999]. The overall structure of the interpretation
is illustrated in Figure 2. The statics takes the form of an elaboration of Standard ML into the type
theory developed by Lee et al. [2007], the “internal” language of the interpretation, equipped with
a Plotkin-style structural operational semantics [Plotkin 1981]. A candidate Standard ML program
is deemed well-formed exactly when it has a well-typed elaboration, and its execution behavior is
defined to be that of its elaboration. Thus, the type safety of Standard ML is reduced to that of the
internal language of the translation.
To facilitate mechanized metatheory the internal language is formulated with conventional

binding and scope mechanisms that support capture-avoiding substitution by renaming bound
variables. Its type system is inductively defined by inference rules that rely on implicit α-conversion
to avoid identifier name conflicts. The type system accounts for the modularity mechanisms of
Standard ML, including type abstraction and type sharing, and phase-respecting dependent types
for modules, and includes recursive types, reference types, and dynamically allocated exceptions
at the core language level. The internal language is equipped with a substitution-based structural
operational semantics [Plotkin 1981] consisting of a state transition system defining the execution
steps of a program and the propagation and handling of exceptions.

Type safety for the internal language is formulated as the conjunction of two properties, preserva-
tion and progress [Harper 2016; Wright and Felleisen 1991]. Preservation states that transitions from
well-formed states are themselves well-formed; progress states that a well-formed state is either
completed, or must either take a step or raise an exception. These properties ensure that well-formed
programs always go right, a strengthening of Milner’s formulation, well-formed programs never go
wrong, that avoids the need for checks for ill-defined states in the operational semantics (which,
after all, can never arise in the execution of a well-typed program).

Elaboration is defined by a relation between raw Standard ML program phrases and their internal
language counterparts. The most important, and indeed indispensable, job of elaboration is scope
resolution, which determines the binding and scopes of identifiers in a Standard ML program.
Unlike the internal language, the scoping rules of Standard ML are surprisingly complicated, and
can only be defined as part of its static semantics. For example, the identifiers introduced by an
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open declaration can only be determined once the signature of the opened structure variable is
determined.
Type inference is performed during elaboration by non-deterministically “guessing” omitted

type information, much as it is in the Definition. Polymorphic generalization is represented using
internal language analogoues of Standard ML functors that abstract over a structure of types.
Equality polymorphism is handled by augmenting this structure with equality test functions on the
equality type variables.75 Datatypes and pattern matching are regarded as modes of use of modules.
A datatype declaration is translated to the definition of a module defining an (opaque) abstract
type whose operations correspond to the value constructors of the datatype and a case analysis
function that is used in the elaboration of pattern matching. To account for the enrichment aspect
of signature matching the elaboration generates a “forgetful functor” that coerces the candidate
structure to the target signature.
The mechanization of type safety for Standard ML makes essential use of these distinctive

capabilities of the Twelf proof asssistant [Pfenning and Schürmann 1999; Schürmann 2009]:
(1) It provides native support for higher-order abstract syntax, which codifies the uniformities

of binding, scope, and substitution, eliminating the need to consider these explicitly in the
metatheory.76

(2) It directly supports the judgments as types principle of the LF logical framework [Harper et al.
1993a]. The statics and dynamics of the internal language, and the elaboration relation, are
codified in Twelf using this principle.

(3) It provides a totality checker that is used to verify the safety of the internal language, and to
check that elaborated programs are well-typed.

The proof of safety is human-readable, written using pattern-matching in a similar way to which it
is used in programming in Standard ML itself.77

The rôle of the Twelf totality checker in the verification of safety may not be immediately obvious.
Briefly, Twelf permits the arguments of a relation (that is, the indices of a family of types) to be
designated as “inputs” or “outputs.” The totality checker ensures that the relation is total (every
instance of the corresponding type family is inhabited). The relevance of totality checking to the
verification of the safety of the language may be seen by examining its precise meaning:

(1) The preservation property may be viewed as stating that for every derivation of a transition
from one state to another and for every derivation of the well-formation of its starting state,
then there is a derivation of the well-formation of its ending state.

(2) The progress property may be viewed as stating that for every derivation of the well-formation
of a state, then there exists a derivation of that state being progressive, in that it is either final,
transitions, or raises an exception.

In each case the quantified assertion is a judgment about the derivations of other judgments, a
characteristic feature of LF [Harper et al. 1993a]. Thus, preservation relates derivations of transition
and of typing of the start state to a derivation of typing of the result state of the transition. Similarly,
progress relates derivations of typing to either a derivations of transition, raising of an exception,
or being a completed state. The quantifiers are expressed by mode declarations, and each case of
the induction on inputs is populated by a constant. The correctness of each case is ensured by
type checking, and the complete coverage of all cases is ensured by the totality checker. The same

75This account of equality polymorphism was later extended to Haskell-style type classes [Wadler and Blott 1989] by Dreyer
et al. [2007].
76For a contrasting viewpoint, see Aydemir et al. [2008].
77See Crary and Harper [2009] for the complete mechanization in Twelf. The underlying theory on which it depends appears
in the cited publications; the Twelf code is published only as the cited repository.
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methods are used to prove that for every derivation that a Standard ML program elaborates there
exists a derivation of well-typing of its elaboration, completing the safety proof.

7.3 Lessons of Mechanization
One purpose of the Definition was to support rigorous proof of the properties of the language,
and in this regard it has been remarkably successful. Milner and Tofte’s Commentary on Standard
ML [1991] is an extensive development of a number of metatheoretic properties of the language,
including the existence of principal signatures for program modules, a generalization of Milner’s
principal typing property for the functional core. Mechanical verification of such properties was
anticipated, but at the time there were few provers that would be adequate for the task.
The first attempt to mechanize the safety of Standard ML was carried out by Elsa Gunter and

Myra VanInwegen [VanInwegen 1996; VanInwegen and Gunter 1993] using the HOL prover [HOL
2019]. Although only partially successful in achieving its goals, this effort clearly demonstrated that
a mechanized proof of safety was within reach, and called attention to the obstacles to a verified
proof. The second attempt, described in the previous section, drew on this experience to achieve a
mechanized proof of the safety of Standard ML using the Twelf prover.

Perhaps the biggest lesson of the Twelf mechanization is that it is essential to define a language
hand-in-hand with the verification of its metatheory, much as in program verification it is essential
to write programs with verification in mind. The separation of internal from external language sep-
arates scope resolution and type inference and management of derived forms from the formulation
of its fundamental type structure and operational semantics. The safety of the internal language is
stated crisply, without the need for instrumentation, and admits straightforward inductive proof,
albeit with many cases. The Twelf prover makes it easy to verify that all cases are handled correctly
(by type checking its formalization), and that all cases are covered correctly by a non-circular
argument (by coverage and totality checking).

The critical step required to apply these methods to another language is to isolate a well-behaved
internal language whose safety is easily stated and proved, and then to define the language in
question by elaboration into the internal form. Absent such a formulation, it appears that the
mechanical verification of the metatheory of a language remains a daunting task; we know of no
other mechanization for a language of comparable scale to Standard ML.

8 THE SML BASIS LIBRARY
The Standard ML Basis Library specification, which was published in 2004 [Gansner and Reppy
2004], complements the Definition (Revised) by specifying a standard set of APIs that all SML
implementations are expected to implement. This section details the history behind this part of the
SML ecosystem, as well as describing some of the key aspects of the design.

8.1 A Brief History of the Basis Library
At the time of the publication of the Definition [Milner et al. 1990], there were five implementations
of Standard ML at various stages of development (Edinburgh ML, MLWorks, Poly/ML, Poplog/ML,
and SML/NJ). The existence of multiple implementations targeting the same language specification
was a real success for the Definition, but it also exposed a major weakness, which was that the
Definition did not specify a complete programming system. Specifically, it only defined a minimal
Basis (described in Appendices C and D) of nine types and fewer than 50 operators and functions.
There were glaring omissions, such as no option or array types and no fold functions over lists.
Furthermore, the Basis did not take advantage of the module system; instead it consisted solely
of core-language definitions. Thus, while these systems were implementing a common language
standard, because of the minimal standard Basis, they differed significantly in the types and
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operations that they provided. Differences in whether functions were curried or not and in the
order of their arguments meant that even basic code written for one implementation was not
portable to others.
In the Autumn of 1991, the SML/NJ implementors issued a proposal [Unknown 1991], titled

“Toward a standard Standard ML,” that began78

We would like to begin seriously and systematically working on the problem of incom-
patible environments and libraries that is threatening to cause us all continuing grief
and to retard the future development of Standard ML.

This document proposed defining a pervasive Standard structure, which would contain a set of
bindings that all implementations would agree to provide. This first attempt to standardize a Basis
for SML did not get much traction, in part because lumping everything into a single structure was
unwieldy, but it did identify the problem and there continued to be discussions about it among the
various implementors at conferences and workshops over the next few years. At the 1993 Functional
Programming and Computer Architecture (FPCA) conference in Copenhagen, MacQueen proposed
that the existing SML/NJ Basis be used as a starting point for designing a standard Basis Library
specification that would replace Appendices C and D of the Definition. In response to this proposal,
Dave Berry and Brian Monahan at Harlequin Ltd. wrote a detailed set of suggestions for revising
the SML/NJ Basis toward adopting it as a common standard.79
The Harlequin proposal laid out guiding principles for what features should be covered by the

Basis, as well as many specifics. The most important aspects included:
• A much richer set of primitive types and type constructors than previously defined. These
included characters, multiple precisions of numbers, arrays, and vectors.80

• OS-independent operations on the filesystem.
• Support for more advanced I/O options, such as random access and both binary and text I/O.
• Support for networking based on the Berkeley Unix Sockets API.
• A design that used the SML module system to structure and organize the API.
• Support for internationalization, including support for differing character encodings and
locales.

Over the course of the next six months, the Harlequin and SML/NJ teams collaborated on turning
these proposals into a more complete and refined design. In March of 1994, a fairly complete draft
of a Basis Library proposal was finished (titled A New Initial Basis for Standard ML) [Appel et al.
1994]. At this point, the scope of the Basis Library was beginning to come into focus. It included
new types for characters and unsigned integers (called words); support for multiple precisions
of numeric types; types for both polymorphic and monomorphic arrays and vectors; portable
interfaces to system services; and richer support for I/O (but not yet networking). Furthermore, this
document included several proposed language changes that were necessary to support the Basis.
These included the addition of literal syntax for characters and words, overloading of numeric
literals, and a syntax for vector literals in patterns and expressions.81
Over the next year or so, the Harlequin and SML/NJ teams collaborated on further refining

the Basis Library design. This was a period of great activity that was further accelerated by Peter
Sestoft’s visit to Bell Laboratories in New Jersey from October of 1994 through June of 1995.82 A

78The author of this document is uncertain, but it was probably David MacQueen.
79Unfortunately, this proposal was not dated, but based on file-system timestamps it was likely written in the Summer or
Autumn of 1993.
80In SML terminology, arrays are mutable sequences, whereas vectors are immutable.
81The latter of these was implemented in SML/NJ, but was not included in the Definition (Revised).
82Peter was one of the developers of Moscow ML, a version of SML that runs on top of the Caml-light bytecode interpreter.
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number of key features were designed and added to the Basis Library during this period [Appel
et al. 1995], including:

• Generic signatures (MONO_ARRAY and MONO_VECTOR) for monomorphic arrays and vectors.
• Organization of the Basis Library into modules so that every type and value had a home in
some structure. Structures were defined for the builtin types (e.g., Bool and List).

• The addition of substring as a builtin abstract type. This idea was later generalized to all
array and vector types as described in Section 8.7.

• A collection of conversion structures for converting between different precisions of numbers.
This design was later abandoned as discussed in Section 8.4.2.

• A consistent design of iteration combinators for all aggregate types.
• A Posix structure that defined an SML interface to the IEEE Std 10031b-1993 standard [IEEE
1993]. This structure had substructures for each of the major components of the standard
(e.g., Posix.Process for process management, etc.).

Up to early 1996, the work on the Basis Library was largely independent of the parallel effort
to revise the Definition. This independence was because the Basis Library work was originally
an effort to address limitations in the original Definition. With the Definition (Revised) nearing
completion, however, there were several rounds of email between the Basis Library group and Mads
Tofte, who was preparing the manuscript for the Definition (Revised). While most issues were fairly
easy to resolve, the question of support for multiple precisions of characters and strings required
several iterations. The difficulty was largely because the Basis Library group had not figured out
what the design for non-ASCII character sets was going to be (see Section 8.8 for more discussion).

While the Definition (Revised) was completed and published in 1997, it took another seven
years to complete and publish the Basis Library specification. This lengthly gestation was in part
because of the amount of material in the Basis Library. The final version had 67 distinct interfaces,
many with multiple implementations and some with multiple sub-structures, and its published
version [Gansner and Reppy 2004] has five times as many pages as the Definition (Revised).

8.2 Design Philosophy
The scope of the Basis Library was an important question early in the design process. At the time,
there were existing libraries that provided implementations of various abstractions, such as finite
sets and maps, and common algorithms, such as sorting, but there was no standard interface for
these. After discussion, it was decided to limit the scope of the Basis Library to features that are
either broadly used (e.g., lists), or that require special compiler and/or runtime system support (this
restriction was interpreted to include structures that provided operating-system portability, such
as the OS.Path structure).

The most important design principle was that the module system would be used to organize the
Basis Library (in contrast to the initial basis defined in the Definition, which defined everything at
top level). This principle was first stated in the 1995 draft [Appel et al. 1995]:

The initial basis is contained in a set of structures. Every type, exception constructor,
and value belongs to some structure, although some are also bound in the initial
top-level environment.

This requirement applied even to builtin types like int and bool. Using the module system to
structure the Basis Library was an acknowledgment of the importance of modules in the design of
the language and made it easy to extend the Basis with new types and operations without having
to invent new globally-unique names. For example, the Definition defined the length function
for computing the length of a list and the size function for getting the length of a string. The
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module system allowed the addition of additional sequence types that could all use length (e.g.,
Array.length and Vector.length).

There was also an agreed upon set of orthographic conventions, such as using camel-case for
functions and upper-case letters for data constructors (Chapter 1 of [Gansner and Reppy 2004]),
although these were violated in a few cases where there was already significant prior use, such as
nil, true, and false).

8.3 Interaction with the REPL
SML began life as an interactive language, and, thus, there was a strong tradition of working in a
Read-Eval-Print-Loop (REPL) environment. Because of this tradition, there was a necessary design
decision about what parts of the Basis Library would be available in the REPL without further user
action.83 For example, the Moscow ML implementation used a command-line switch to specify
what modules would be available in initial REPL environment, and the Harlequin team argued that
the choice of what was available in the REPL be left to implementations. The counter argument was
that the purpose of having a Basis Library specification is consistency across implementations. This
view eventually won out. Many SML implementations also support a “batch” compilation mode (in
fact, some do not support a REPL). For these build systems, the user must specify inclusion of the
Basis Library explicitly.

8.4 Numeric Types
Support for numeric types and operations in the Definition suffered from a number of problems.
These included a paucity of numeric types, no specification of the semantics of numeric types, and
design choices that made efficient implementation difficult. For example, the Definition defined a
different exception for each arithmetic operator (i.e., Quot, Prod, Sum, and Diff). This design was
overly complicated and precluded the use of hardware trapping mechanisms (because the hardware
traps did not distinguish between different operations). In fact, some implementations, such as
SML/NJ, defined these exceptions as aliases for a single exception. The Basis Library simplified
this design by defining just two arithmetic exceptions: Overflow, for integer overflow, and Div, for
integer division by zero.

8.4.1 Supporting Multiple Precisions. The Definition defined only two numeric types — int and
real — of unspecified precision. There was clearly a need for multiple integer precisions (e.g.,
an implementation might want to support both small integers with fast arithmetic and arbitrary-
precision integers, or both 32 and 64-bit floating-point numbers), but the design was complicated by
the fact that existing implementations had already made different choices about representations. For
example, SML/NJ and MoscowML used a tagged 31-bit representation for the int type [Appel 1990],
while Harlequin’s MLWorks implementation used 30 bits.84 The initial design [Appel et al. 1994]
assumed that implementations would provide SmallInt (small, fixed-precision integers) and/or
LargeInt (arbitrary-precision integers), with the Integer structure being an alias for one of these. In
addition to integers, a Word structure was defined for fixed-precision unsigned integers. There was
also a suggestion that an implementation might also provide other fixed-precision integer/word
types in modules named Intn (resp. Wordn) where n is the number of bits of precision. This initial
proposal was fairly close to the final design, the main difference being a standardization on the
Intn/Wordn naming scheme with IntInf for arbitrary-precision integers. The same scheme was

83One must remember that computers were much slower and had significantly smaller memories at that time.
84The choice of 30 bits was motivated by the hardware support for tagged arithmetic on the SPARC processor.
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used for real numbers (e.g., Real64).85 Implementations were required to provide structure aliases
for the default integer type (Int), default word type (Word), and the largest fixed-precision type
(FixedInt).

This scheme was a compromise between the reality that existing implementations had made
different choices about numeric representations and the need to support a way to write portable
code. For most applications, one could program using the default types, but if the application
required a specific precision, say 32-bit integers, then one could explicitly use the Int32 module
and be limited to those systems that provided it.
The choice to support both signed and unsigned integers at various precisions required some

additional changes to the Definition. Word literals were prefixed with “0w” to distinguish them
from integers and the ad hoc overloading of arithmetic operators was extended to numeric literals.
It was also decided to specify default typings for operators and literals, so that definitions like

val n = 1 ;
fun inc x = x +1 ;

would only require explicit type annotations when a non-default numeric type was desired.

8.4.2 Conversions Between Types. Supporting multiple precisions of numeric types created a need
for conversions between the different types. The early designs of the Basis Library defined a Cvt

structure that contained five kinds of conversion substructures: i.e., conversions between different
precisions of integer, word, and real types, plus conversions between integer and words, and integers
and reals. A typical SML implementation might provide three precisions of integers and words
(8, 31, and 32-bits) and a single real type, which required 16 different conversion substructures. It
became clear that this approach was not going to scale well. In circa 1996, an alternative approach
was adopted that takes advantage of the fact that one can promote numbers to the largest available
representation without loss of information. Thus, a conversion from a 32-bit integer to an 8-bit
integer could be expressed as the composition of two conversions.

val int32to8 = Int8 . fromLarge o Int32 . toLarge

With this design, the number of conversion functions defined by the Basis was linear in the number
of numeric types, but there was a potential efficiency issue. To overcome this problem, Lal George
and John Reppy developed a compilation technique that allowed for as efficient a solution as
supporting direct conversions between every pair of numeric types. They defined a set of five
primitive conversion operators that could express all of the conversions defined by the Basis:86

• TEST(n,m) — checked conversion from an n-bit two’s-complement signed representation to
m-bits where n > m.

• TESTU(n,m) — checked conversion from an n-bit unsigned representation to anm-bit two’s-
complement representation, where n ≥ m.

• TRUNC(n,m) — truncate an n-bit value to anm-bit value, where n ≥ m.
• EXTEND(n,m) — sign extend an n-bit value to am-bit value, where n ≤ m.
• COPY(n,m) — copy (i.e., zero-extend) an n-bit value to anm-bit value, where n ≤ m.

This approach can handle arbitrary precision integers (i.e., the optional IntInf.int type) by allowing
∞ as a bit width.
In addition to these primitive conversion operations, George and Reppy defined an algebra of

conversions that compilers could use to rewrite compositions of conversions into single operations.
85In retrospect, float, Float64, etc. would have been more accurate names, but real was backward compatible with the
Definition.
86Note that this design deals only with conversions between integer and word types; conversions involving reals were less
of an issue, since implementations were expected to have at most two different precisions of reals.
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For example, the conversion from 8-bit words to 32-bit integers type could be defined by the
following composition:

val word8toInt32 = Int32 . fromLarge o Word8 . toLargeInt

Assuming that the default integer size is not 32-bits and the large int type is IntInf.int, then this
conversion would translate to

TEST (∞ , 3 2 ) o COPY ( 8 ,∞ )

which can be rewritten to

COPY ( 8 , 3 2 )

In this way, a conversion between any two integer or word types can be simplified by the compiler
to a direct conversion.

8.4.3 Real Numbers. By the mid 1990’s, most computer hardware had adopted the IEEE 754
Standard for Floating-point arithmetic [IEEE 1985]. Therefore, it was decided that the Basis Library
should specify IEEE Floating-point semantics for the real type. While this decision made sense
from the point of view of wanting to support efficient floating-point computations, it raised a few
interesting design problems.

The design philosophy of SML is biased toward safety over performance. If an arithmetic opera-
tion overflows its representation or is given invalid arguments, the usual response is raising of an
exception. As processor clock speeds increased, this approach imposed significant performance
penalties on floating-point computations. The IEEE Floating-point standard addressed this problem
by introducing signed infinities and “Not-a-Number” (NaN) values into the floating-point represen-
tation.87 While early implementations of SML used trapping floating-point arithmetic, it was clear
that such semantics would prevent performant floating-point computation in SML. Therefore, it
was decided to adopt the IEEE non-trapping semantics for the SML real type.

The decision to allow NaNs as real values in SML lead to the question of whether the real type
should continue to support equality (as discussed in Section 4.5). The Harlequin team argued that
real had always been an equality type in SML and that there was too much history to change
it. Countering this argument was the fact that because the Basis Library specified non-trapping
IEEE floating-point semantics, treating real as an equality type would break properties that users
and implementors expected to hold. Specifically, the expression “x = x” evaluates to false when
x is a NaN. This property also has implementation consequences. A common technique when
implementing equality on data structures, such as lists, is to first check if the two objects are the
same using pointer equality and only recursively compare them if the pointer-equality test returns
false. This optimization is not valid if the lists might contain NaNs. Because of these technical
problems, real was removed from the list of equality types and the Real.== function with IEEE 754
equality semantics was added as a replacement to the Basis. This change was also reflected in the
Definition (Revised) by the removal of real literals from the syntax of patterns.88

8.5 Input/Output
Support for Input/Output (I/O) was a topic of discussion from the earliest design meetings in the
1980’s. The first I/O design proposal was by Luca Cardelli, who proposed a single bipolar stream
type [Cardelli 1983c]. At the June 1984 design meeting, it was recommended that the design for
87If an operation overflows the representation, the result is infinity, and if the result is not defined (e.g., 0.0/0.0 ), the result
is a NaN.
88Note that while pattern matching against a real literal does not have the problem of non-reflexive equality on NaNs, real
literals are not always exactly representable as floating-point numbers, which could cause surprising behavior.
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I/O follow Cardelli’s proposal, but that unipolar streams should be used (i.e., separate input and
output-stream types). This guidance led to a couple of competing proposals: one by Keven Mitchell
and Robin Milner [Mitchell and Milner 1985], and another by Robert Harper [Harper 1986]. The
latter proposed two I/O modules: BasicIO, which defined a minimal collection of I/O operations
for text, supporting both terminals and text files, and ExtendedIO, which defined a few useful, but
more complicated, operations, such as polling an input stream and running a Unix subprocess
connected by I/O streams. The types and operations defined in Harper’s BasicIO structure became
the standard by being included in Version 1 of the Definition [Harper et al. 1987a].89 His design
was also supported by the early implementations: the Edinburgh SML implementation included
the BasicIO structure and the earliest versions of SML/NJ provided an IO structure that merged
Harper’s two structures into one.

I/O support as provided by the Definition was quite minimal and only useful for simple text-based
applications. It lacked support for random access in files, binary I/O, and unbuffered I/O. All of
these were features that would be necessary to support richer applications.
In 1994, Andrew Appel and Reppy had a series of discussions about the design of a new I/O

Library for SML/NJ. These discussions were focused on a layered design that was inspired by recent
work on an I/O library for Modula 3 [Brown and Nelson 1989] and resulted in a series of eight
iterations of the design, written by Appel, in response to feedback from Berry and others.90 The
final design involved three layers:
(1) The PRIM_IO interface defined reader and writer types that were an abstraction of unbuffered

system I/O. Following the object-oriented design of the Modula 3 library, these types were
defined as records of operations and included support for non-blocking I/O and random
access.

(2) The STREAM_IO interface defined a I/O streams that provided buffered I/O. A key feature of
the input streams was a functional semantics that allowed arbitrary look ahead.

(3) The IO interface (later renamed IMPERATIVE_IO) defined the traditional stream-I/O operations
that had been in common usage.91 Streams at this level were essentially mutable references
to the streams from the STREAM_IO level, which allowed for redirection of I/O.

Each of these layers had two instantiations: one for binary I/O and one for text I/O. The TextIO

stack included definitions for the standard input, output, and error streams.92

8.6 Sockets
It was clear that the Basis Library should include standard support for networking93 and in late
1994, Berry submitted a proposal for adding sockets to the Basis.94 Berry’s proposal was based on
the Berkeley UNIX and Microsoft’s WinSock APIs, which were fairly standard at that point, and it
was pretty much a direct mapping of the C-language API into SML; the two main differences were
89Since the Definition did not define any modules, these were included as top-level bindings.
90The first proposal was written in November of 1994 [Appel 1994] and the last in July of 1995 [Appel 1995]. These documents
are available at http://sml-family.org/history.
91The names of the operations, however, were eventually changed to follow the camel-case conventions of the Basis Library.
92In retrospect, it was probably a mistake to include the standard I/O streams in the TextIO structure. An alternative
approach would have been to put them in a ConsoleIO structure (and perhaps make them pervasive in the REPL
environment). This would have made it easier to accommodate programs that are not connected to a TTY (e.g., GUI
applications).
93The SML/NJ runtime included functions for creating client-side TCP/IP connections, which had been added to support
the eXene X11 windowing library [Gansner and Reppy 1991, 1993], but there was no support for server-side or UDP/IP
operations.
94This date is a bit of a guess; there is some evidence that Berry might have first proposed a sockets interface earlier, but
there is no record of that proposal.
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the use of abstract types to represent sockets, address families, etc., instead of the raw integers
used in C, and the replication of the socket operations for each kind of socket. The latter difference
ensured type security at the cost of a much larger number of functions in the API.

The major challenge in the design of the Sockets API for SML that Berry was addressing in his
design was the problem of providing strong static types for socket operations. In the UNIX APIs, a
socket is represented by an integer file descriptor, independent of its rôle or state. and dynamic
checks are used to ensure that sockets are used correctly. For example, there is no static way to
distinguish between a socket that is being used to accept stream connections and one being used to
send datagrams.
Reppy responded to Berry’s proposal with a design that improved the interface to network

databases (for address lookup), added a Poll structure that generalized the select operation in
Berry’s design to also allow waiting for file I/O, and merged the distinct sets of socket operations
into a single Socket structure. Berry objected to the single Socket structure because of the fact that
having structures specialized to specific protocols and address families provided stronger static
type guarantees (e.g., one could not mix up datagram and stream connections, because the socket
types would be different).
The tension between the desire for a solution that provided fine-grain distinctions between

different socket types and wanting to avoid a proliferation of different Socket modules lead to the
discovery of a neat trick for encoding the distinctions using type constructors and distinguished
abstract types as arguments to the constructors (a trick that was independently discovered by
others and has come to be known as phantom types [Leijen and Meijer 1999]). This technique was
used in Reppy’s second design, where the socket type was replaced with the type constructor

type ' a sock

The type argument could be instantiated with an abstract type that represented the type and address
family of the socket. This design allowed operations that did not depend on the type or address
family to be polymorphic; e.g.,

val close : ' a sock −> unit (* close a socket *)

while other operations were given monomorphic types

signature UDP_SOCK =
sig

type udp

val socket : unit −> udp Socket . sock
. . .

end

This design provided the type safety of Berry’s proposal, but with a much smaller interface. Of
course, it was possible to design an even better API by using two type variables: one for the address
family and one for the “type” (datagram or stream). After three more iterations, the design was
largely finalized with the following types:

type ( ' af , ' sock ) sock

type ' af sock_addr

type dgram

type ' mode stream

type active

type passive
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with phantom types (although that name had not yet been coined) being used to enforce type
safety [Reppy 1996]. For example, the accept function, which waits for connection requests is given
the type

val accept : ( ' af , passive stream ) sock

−> ( ' af , active stream ) sock ∗ ' af sock_addr

This type encodes the requirement that accept be called on an passive stream and the fact that it
returns an active stream and the socket address of the connecting entity. Furthermore, the type
requires that the address family of the argument socket be the same as the result socket and address.

8.7 Slices
The last major feature to be added to the Basis Library was the notion of a slice of an array or vector
type, which was a generalization of the substring type.
The substring type and Substring structure were introduced to represent a subsequence of a

string value.95 The type and its operations were based on Wilfred Hansen’s subsequence alge-
bra [Hansen 1992]. The substring type encapsulates an underlying string value with a start index
and length, which allows efficient in situ processing of strings. For example, tokenizing a string or
removing leading and trailing whitespace could be done without copying the underlying string
data.

Substrings proved to be a very useful mechanism, so in the Spring of 2000 MacQueen proposed
generalizing them to all of the array and vector types in the Basis. For each array and vector module,
a corresponding slice structure was added to the basis (e.g., CharArraySlice).

Slices provided an efficient way to do in situ processing of sequence data; for example, splitting
a string into fields required copying the individual fields into new strings, whereas splitting a slice
into fields just required defining a new slice for each field. Slices also provided a handy mechanism
for iteration over sequences; both at the element level, where the slice represents the position of
the next element, and as an argument to iteration combinators. Lastly, the addition of slices allowed
a simplification of the array and vector signatures, since indexed versions of iteration combinators
that specify the start and end of the iteration were removed in favor of equivalent operations on
slices.

8.8 Internationalization and Unicode
Over the course of designing the Basis Library, there were a number of ideas that were explored in
detail, but eventually removed from the specification. The most significant of these was support for
internationalization and non-ASCII character sets. A follow-on to the 1993 proposal from Harlequin
included a three-part discussion of how SML might support locales and non-ASCII character sets.
This design proposal was fleshed out by Berry in May of 1995, with a design that added support for
wide characters, and localization in the form of a Locale structure that was loosely based on the
C-language localization mechanisms. These design ideas were incorporated in the 1995 drafts of
the Basis Library specification.

Unlike most other parts of the Basis Library design, adding support for more character and string
types required cooperation with the Definition effort, since the language syntax had to be extended
to support non-ASCII characters.96 As Tofte was wrapping up the Definition (Revised) during the
spring and summer of 1996, there were several design iterations that attempted to address support
for multiple character and string representations. In March 1996, Berry proposed a design with
two classes of characters defined by top-level structures Char8 and Unicode, with substructures for
95The Substring structure was added in the Spring of 1995.
96In fact, the char type and its literal syntax were ideas from the Basis effort that had already been added to the Definition.
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strings and characters. The problem with this approach, however, was that the Definition was not
structured to specify modules as part of its predefined basis; instead, it required all types to be
defined at top-level. Therefore, Tofte proposed an alternative design that added the top-level types
unichar and unistring to be the type of 16-bit Unicode characters and strings, with support for
these types being required by all implementations.97 The Basis design team pushed back against
this proposal, because it did not allow for encoding schemes other than Unicode (e.g., Shift JIS) and
because it required implementations to support two precisions of characters.

The resolution to this problem was to adopt the same approach to characters and strings as had
been adopted for the numeric types and literals. The Definition specified two default, top-level, types
(char and string) and implementations were allowed to support additional character types with the
requirements that they provide at least 256 characters and agree with the ASCII character encoding
on the first 128 values. As with numeric literals, character and string literals were overloaded
when an implementation supported multiple types. A new escape sequence was added to specify
characters outside the 8-bit range, since the syntax of SML programs was restricted to the ASCII
character set. This design was included in the final draft of the Definition in late August 1996.

While the question of how to handle characters and strings had been resolved, there were various
related issues, such as how to specify conversions between character encodings, how to support
variable-length encodings (e.g., UTF-8), and what kind of locale-specific support should be provided.
In the end, the design committee was uncertain about the best way to handle internationalization
and so took a conservative approach with the expectation that a future extension of the Basis
Library could handle the problem. As a result, the Locale structure was removed from the library
and the only provision for non-ASCII characters was the definition of a TEXT signature and an
optional WideText structure that could be a home to a multibyte representation of characters and
strings.

8.9 Iterators
Another example of a major feature that did not make the final cut was a general framework for
iteration. At one point, there was a design proposal for an iteration abstraction (essentially a stream
type) and that there would be generators for every sequence type. This design then allowed a
single set of iteration combinators (e.g., map, fold, etc.) to be defined. While this design was elegant
and would have improved modularity and code reuse, there was concern that the implementation
overhead of the iteration abstraction would be too great, so it was rejected.

8.10 Publication and Future Evolution
The Basis Library specification was finalized in 2003 and published as a book by Cambridge
University Press in 2004 [Gansner and Reppy 2004]. As part of the publication agreement, the
“manual pages” part of the specification98 was posted on the web in HTML and permission to
redistribute these pages was provided on request. The decision to publish the Basis Library as a
book, rather than just posting it on the web was partially driven by a belief by some stakeholders
that the existence of a book would give SML extra credibility. The decision was also a function of
the times; web distribution of documentation was not very widespread in the mid 1990s.
Unlike the case of the published Definition of Standard ML, the expectation was that the Basis

Library would evolve to reflect changes in systems and practice. For a number of years, however, the
Basis did not change, since implementors were more focused on compilers, higher-level libraries,

97This design was contained in a June 1996 draft of the Definition.
98The published book also included seven supplementary chapters of tutorial material.
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and applications. In the last few years, however, a number of changes to the Basis Library have
been proposed and integrated into some implementations.99

8.11 Retrospective
It most respects, the Basis Library standardization achieved its desired goals; it provided a foundation
for applications and higher-level libraries to be written and easily ported across multiple SML
implementations. There are a few areas, however, where the results might have been better:

• The handling of different integer and word sizes, while necessary to bridge differences in
existing implementations, is inelegant. In retrospect, it probably would have been better to
specify a small collection of standard sizes that would be present on all implementations.

• Another mistake in the design of numeric types is the fact that the default types are aliases
of implementation-dependent types instead of being abstract. For example, int is an alias for
Int31.int in some implementations, while it is Int32.int in others. Code that inadvertently
relies on such aliasing will be non-portable. If the default types were abstract, then such
portability bugs would be caught by the type checker.

• Neither the Definition nor the Basis Library addressed the question of interoperability with
foreign code. As a result, libraries and applications that build on foreign code are non portable.
Differences in the compilation models make specifying a standard foreign-function interface
mechanism difficult. For example, batch-compiler implementations like the MLKit compiler
or MLton can statically link to foreign functions, whereas interpreters like MoscowML or
interactive compilers like SML/NJ must use dynamic loading and linking. Matthias Blume’s
NLFFI design [Blume 2001] provides some portability, since it is supported on multiple
implementations, but there are still differences in linking.

• While the Basis Library provided a standard API for writing SML code, it did not specify any
requirements for how to specify the building and linking of libraries and applications. As
discussed in Section 5.7, the Definition did not address mechanisms for separate compilation,
which are a necessary prerequisite for a scalable build system. Scaling to large systems requires
a graph structure and visibility control mechanisms at the library level. Unfortunately, there
are several different, and incompatible, solutions to specifying the composition of compilation
units [Blume and Appel 1999; Cejtin et al. 2004; Harper et al. 1994; Swasey et al. 2006a],
which means that to write a portable SML library or application requires writing multiple
build specifications.

8.12 Participants
Many people contributed to design and specification of the Basis Library specification. The main
design work in the period between FPCA ’93 and the completion of the Definition (Revised) was
carried out by the implementors of Harlequin’s MLWorks system, SML/NJ, and Moscow ML:
Andrew Appel, Matthew Arcus, Nick Barnes, Dave Berry, Richard Brooksby, Emden Gansner, Lal
George, Lorenz Huelsbergen, David MacQueen, Brian Monahan, John Reppy, Jon Thackray, and
Peter Sestoft.
The final document was edited by Emden Gansner and John Reppy, who were both involved

in the design process from the start. The other principal contributors were Andrew Appel, Dave
Berry, and Peter Sestoft, with additional design and writing contributions from Nick Barnes, Lal
George, Lorenz Huelsbergen, David MacQueen, Dave Matthews, Carsten Müller, Larry Paulson,
Riccardo Pucella, Jon Thackray, and Stephen Weeks. Furthermore, countless members of the SML
community provided feedback on various iterations of the design over the years.

99These proposals have been gathered at https://github.com/SMLFamily/BasisLibrary.
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9 CONCLUSION
To wrap up the history of Standard ML, we review mistakes that were made in its design, its place
in the larger world of programming languages, and its post-definition history.

9.1 Mistakes in the Design of Standard ML
Following the publication of the Definition of Standard ML in 1990, there were a number of
critiques written about the language. As part of developing the definition of EML (see below), Stefan
Kahrs identified a number of errors in the Definition in his detailed (and occasionally pedantic)
examination of the Definition [1993]. Andrew Appel [1993] and David MacQueen [1994] wrote
more reflective critiques that covered both the strengths and weaknesses of the language. The
issues raised by these critiques and other discussions were part of the motivation for the ML2000
effort described in Section 3.3.1 and for the Definition (Revised).

While the Definition (Revised) fixed many of the detailed issues raised by Kahrs as well as some
of the larger issues, such as imperative type variables, the final design was not perfect. Andreas
Rossberg compiled a catalogue of defects in the Definition (Revised) [Rossberg 2013a]. While many
of these were minor issues in the writing of the definition, Rossberg observed that the Definition
was ambiguous in several important places. For example, the specification of overload resolution is
not precisely defined, which leads to incompatibilities between implementations.100
In addition to the technical defects identified by Rossberg and others, there were a number

of significant omissions from the Definition. Surprisingly, the Definition’s specification of the
language’s syntax is lacking in many ways. There is no specification of the full syntax (many
syntactic features are defined as derived forms) and the grammar is ambiguous in a number of
places. The lack of a standard code-assembly mechanism and the lack of a standard foreign-function
mechanism are two other serious omissions that were already discussed in Section 8.11.

9.2 The Impact of Standard ML
Standard ML was the first statically-typed functional language to gain broad use ranging from
the class room to research projects to commercial applications. It provided a vehicle for research
in programming-language design, semantics, and implementation that resulted in many research
papers and dissertations. There are over a dozen textbooks based on SML, including introductory
programming texts [Felleisen and Friedman 1998; Paulson 1996; Ullman 1998], concurrent pro-
gramming [Reppy 1999], compilers [Appel 1998], and research monographs [Appel 1992; Nielson
1997]. There are also a number of substantial on-line texts about SML programming [Gilmore 1997;
Harper 2011; Pucella 2001; Shipman 2002].

9.2.1 Applications of SML. The original application of ML was the Edinburgh LCF system [Gordon
et al. 1979], which had a strong influence on the original design of ML [Gordon et al. 1978a]. In
particular, the LCF/ML’s abstract type mechanism was designed to allow only provable theorems
(which were values of an abstract type) to be constructed. Likewise, the need to implement proof
tactics motivated the inclusion of higher-order functions and failure trapping. The subsequent
design evolution from LCF/ML to Standard ML was not driven by applications (other than its use in
proof systems), but once there were a number of robust implementations of Standard ML available,
the language became an attractive tool for implementing other systems. While these applications
were largely developed after the definition was finalized, and thus did not influence the design, they
did have some influence on the design of the SML Basis Library and on implementations of SML.

100Kahrs identified problems with overloading in the Definition [1993], but these were not fixed in the Definition (Revised).

Proc. ACM Program. Lang., Vol. 4, No. HOPL, Article 86. Publication date: June 2020.



86:76 David MacQueen, Robert Harper, and John Reppy

Because of its roots in proof systems, SML has proven to be particularly well suited to applications
that manipulate syntax trees of one form or another. These, of course, include a number of proof
assistants; the most notable being HOL [HOL 2019], Isabelle [Isabelle 2019], LEGO [Luo and
Pollack 1992], and Twelf [Pfenning and Schürmann 1999; Schürmann 2009]. Some implementations
(e.g., Moscow ML and SML/NJ) have included features, such as quote/antiquote mechanisms and
customizable pretty printers, to better support proof systems. Related to theorem provers is The
Concurrency Workbench [Cleaveland et al. 1993], for reasoning about concurrent systems specified
using CCS.101

Compiler implementations share many characteristics with proof assistants, so it is not surprising
that the most popular use of SML has been for writing compilers.102 We discuss the many SML
compiler projects below in Section 9.2.3 and the Appendix. Other examples include Moby [Fisher
and Reppy 1999, 2002], which explored the combination of class-based object-oriented program-
ming with the ML module system; Nova [George and Blume 2003], which was a domain-specific
language for programming network processors, PolyMLR [Blume et al. 2006, 2008], which explored
a generalization of Atsushi Ohori’s polymorphic record calculus; and Diderot [Chiw et al. 2012],
which is a parallel domain-specific language for scientific image analysis and visualization.

Another common area of application is in various kinds of program analysis tools: Aiken et
al. implemented the Berkeley Analysis Engine for constructing constraint-based program analyses
using SML [Aiken et al. 1998], which was used to build a system for detecting Y2K bugs in C
code [Elsman et al. 1999]. AnnoDomini was a commercial source-to-source conversion tool for
eliminating Y2K bugs from COBOL programs [Eidorff et al. 1999].

Database software is another, perhaps unexpected, area where SML has found application. Timo-
thy Griffin and Howard Trickey at AT&T Bell Laboratories developed a tool called pdiff for writing
safe transactions103 on the embedded relational database in AT&T’s 5ESS telecommunications
switch [1994]. Other examples from the world of databases includes the Kleisli Query System [Wong
2000] and Chlipala’s Ur/Web system for dynamic web applications with SQL backends [2015].

While most of the above examples are applications that have term manipulation as a core com-
ponent, SML has also been used for a number of more traditional systems projects and applications.
Gansner and Reppy developed the eXene GUI library [1991; 1993] using the Concurrent ML exten-
sions in SML/NJ [Reppy 1991, 1999]. This library had a complete client-side implementation of the
X11 network protocol and was used in a number of other projects. The work on eXene was a major
motivator for the sockets APIs in the Basis Library (Section 8.6). The FoxNet project at CMU pushed
the use of SML as a general systems programming language [Harper and Lee 1994]. A particular
focus of the project was the use of the SML module system to build protocol stacks from reusable
microprotocol implementations [Biagioni et al. 1994]. The use of SML for performance-critical
code, such as protocol stacks, was a major motivation for the subsequent work on the TIL and TILT
compilers, which are described below. In addition to the Ur/Web system, there are a couple of other
examples of SML being used to implement web servers. The Swerve web server was developed by
Anthony L. Shipman using Concurrent ML [Shipman 2002]; this system was later ported to MLton.
And Elsman implemented an Apache Web server plugin using the ML Kit compiler that allows
dynamic web applications to be implemented in SML [Elsman and Hallenberg 2003]

9.2.2 Language Design. Standard ML popularized a number of features that functional-language
programers take for granted today. The most important of these being datatypes with pattern
matching, Hindley-Milner type inference, and parametric polymorphic (or “generic”) types. In

101This tool lives on as the Edinburgh Concurrency Workbench (http://homepages.inf.ed.ac.uk/perdita/cwb).
102In fact, MacQueen has described SML as “a domain-specific language for compilers.”
103Safe transactions are ones that maintain the integrity constraints of the database.
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the latter case, Standard ML has arguably played a key rôle in popularizing the notion of type
inference and of parametric polymorphic (or “generic”) types in modern programming languages.
For example, Andrew Kennedy’s experience with implementing SML on the JVM was directly
transferred to Microsoft’s .NET environment [Kennedy and Syme 2001].

While the definition of SML has been static since 1997, the language has been used as the host for
many experiments in language design. These include extensions to pattern matching [Aitken and
Reppy 1992], non-local control flow [Benton and Kennedy 2001; Harper et al. 1993b], extensions to
the type system, such as adding dimension types [Kennedy 1996] and record polymorphism [Ohori
et al. 2014], and extending the language to support staged meta programming [Taha and Sheard
2000].
SML’s module system is one of it most distinguishing features and directly influenced the

design of modules in Caml Special Light [Leroy 1994]. The design and semantics of modules
has also inspired many research efforts. These include generalizing modules to support higher-
order functors [Dreyer et al. 2003; Harper and Lillibridge 1994; Leroy 1995; MacQueen and Tofte
1994; Russo 1998], first-class (or dynamic) modules [Rossberg 2015; Rossberg et al. 2015; Russo
1998], recursive modules [Crary et al. 1999; Dreyer 2007; Dreyer et al. 2001; Russo 2001], mixin
modules [Dreyer and Rossberg 2008; Duggan and Sourelis 1996; Hirschowitz and Leroy 2005], and
modular type classes [Dreyer et al. 2007]. There has also been a recent line of research to unify the
notion of structures and signatures [Rossberg and Dreyer 2013], and to unify the core and module
languages [Rossberg 2018].

ExtendedML (EML) was a language that combined SML’s structures and signatures with algebraic
specifications [Kahrs and Sannella 1998; Sannella and Tarlecki 1985]. The goal of EML was to allow
a program to be developed in steps from an unimplemented algebraic specification to a complete
program. EML extended the SML module language by allowing axioms to be included in signatures,
where they specify the behavior of operations, and in structures, where they serve as placeholders
for unimplemented operations. Likewise, the formal definition of EML was an extension of the
Definition of Standard ML [Kahrs et al. 1994, 1997] and its development resulted in the identification
of many issues in the Definition [Kahrs 1993]. EML was designed to be a front end that would
produce proof obligations to be solved by a supporting theorem prover. Front ends were built based
on the ML Kit compiler and, later, on Moscow ML, but there was never a complete system.

9.2.3 Language Implementation. One of the most significant impacts of SML has been the explo-
ration of a wide and diverse range of implementation techniques in SML compilers.

The Standard ML of New Jersey (SML/NJ) implementation built on previous work in the Scheme
community to push a continuation-passing-style IR to its limit [Appel 1992; Appel and Jim 1989].
This IR was pushed further with the development of a technique to model callee-save registers in the
IR [Appel and Shao 1992] and a “safe-for-space” closure conversionalgorithm [Shao and Appel 2000].
The SML/NJ system provided a testbed for many other lines of research in language implementation
research. These include Andrew Tolmach’s work on replay debugging [1992] (which exploited
SML/NJ’s heap-allocated continuations to achieve space and time efficient checkpointing) and
the MLRISC code generation framework [George et al. 1994], which was originally developed to
provide a portable backend for SML/NJ, but became a platform for research into register allocation
and other code generation techniques [Appel and George 2001; George and Appel 1996; Leung
and George 1999]. Nick Benton, Andrew Kennedy, and others developed the MLj compiler that
compiled SML to the Java Virtual Machine [Benton and Kennedy 1999; Benton et al. 1998]. They
followed this project with an SML compiler for Microsoft’s .NET platform [Benton et al. 2004].
The SML.NET compiler used an imperative implementation of its IR to implement linear-time
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shrinking [Benton et al. 2005] and used a limited form of continuation in its IR to model loops and
other control flow [Kennedy 2007].
Several SML compilers have explored whole-program compilation techniques. One interesting

line of research has been the use of monomorphization,104 where a polymorphic program is
converted to a first-order monomorphic one by instantiation and defunctionalization [Reynolds
1972]. The combination of these techniques allows the compiler to get precise information about
control flow and runtime representations. The RML compiler used this approach to compile SML
to Ada [Tolmach and Oliva 1998], while the MLton compiler exploits these techniques to produce
highly-optimized code [Cejtin et al. 2000].
The use of advanced type systems for compiler intermediate representations was pioneered in

Standard ML compilers; particularly the Typed Intermediate Language (TIL) work at CMU [Morrisett
1995; Petersen 2005; Tarditi 1996; Tarditi et al. 1996] and the FLINT IR that Zhong Shao and his
students developed for the SML/NJ compiler [Saha and Shao 1998; Shao 1997; Shao and Appel 1995;
Shao et al. 1998]. The TIL compiler emphasized the use of intensional type analysis and run-time
dispatch on types to compile polymorphism; the TILT compiler [Petersen et al. 2000; Petersen 2005]
extended these methods to the full language, including modules and separate compilation [Swasey
et al. 2006a]. The development of these compilers inspired, and was inspired by, the reformulation
of the Standard ML definition described in Section 7 and led to other research on the use of types
in intermediate languages [Morrisett et al. 1998].

The Church project was a compiler for SML that used a typed intermediate language, CIL, which
allowed polyvariant flow properties to be expressed using intersection types [Wells et al. 2002].
This information could be used to support optimizations, such as specializing the representation of
function values [Dimock et al. 2001].
Runtime systems and, especially, garbage collection (GC) have also been an active area of

research in the SML community [Appel 1987, 1989b, 1990; Appel and Concalves 1993; Reppy 1993].
A particularly interesting line of research explored using static type information to eliminate
runtime tags [Appel 1989a; Goldberg 1991; Goldberg and Gloger 1992; Tolmach 1994]. This work
was based on the observation that it was possible to reconstruct the types of values as the garbage
collector traced the live data by using the static typing context for the GC point. Tolmach also used
these type reconstruction techniques in his replay debugger [1992].

One of the most influential ideas to come out of the SML implementation community is the use
of region-type inference to manage memory without garbage collection [Tofte and Birkedal 1998;
Tofte et al. 2004; Tofte and Talpin 1994, 1997]. This technique uses an effects type system to associate
a region with every allocation. The static region information is used to guide an arena-allocation
strategy [Hanson 1990], where all of the memory in a region is reclaimed in a constant-time
operation when the data in the region is guaranteed to be unreachable. Supporting region types,
which were internal to the compiler, with separately compiled modules required new techniques for
propagating information across compilation boundaries and for inter-module optimization [Elsman
1999a]. These techniques were implemented in the ML Kit compiler [MLKit 2019].

9.2.4 Concurrency and Parallelism. SML has provided the base for significant research in concurrent
and parallel language design and implementation going back to its earliest days. For example, Kevin
Hammond’s Ph.D. research explored the compilation of SML Version 1 [Harper et al. 1987a] to a
parallel graph-reduction machine [Hammond 1988].

The earliest support for concurrency in SML was the Process module provided by the Poly/ML
implementation, which supported synchronous message passing over typed channels. This design
104Monomorphization is possible in SML because the language does not support first-class polymorphism or polymorphic
recursion.
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was influenced by Holmström’s PFL [1983] andMilner’s Calculus of Communicating Systems [1980].
It included a non-deterministic choice operator that forked two subprocesses, but would only allow
one of them to communicate. In the general case, this mechanism was an unguarded choice that
was challenging to implement. Independently, Reppy developed a message-passing framework
for the Pegasus ML language (an ML dialect) [1988] that provided an abstraction mechanism
for synchronous communication. The SML/NJ implementation added support for first-class con-
tinuations around 1989, which made experimenting with user-space concurrency mechanisms
quite easy. At Princeton, Norman Ramsey developed a message-passing library using SML/NJ’s
continuations [1990] and, at Cornell, Reppy reimplemented the mechanisms from Pegasus ML in a
language that he called Concurrent ML (CML) [Reppy 1989, 1991, 1999]. Cliff Krumvieda developed
distributed programming constructs based on CML and the Isis atomic multicast model [Cooper
and Krumvieda 1992; Krumvieda 1993].
There were also more traditional shared-memory concurrency libraries developed for SML.

Morrisett and Tolmach developed a multiprocessor extension of SML/NJ [Morrisett and Tolmach
1993] and eventually Poly/ML replaced its Process module with a Threads module that implements
a PThreads-style programming model.
More recently, there have been several projects on building scalable parallel programming

languages using SML as sequential core. The Manticore project developed a parallel language,
called Parallel ML (PML), starting with a reference-free subset of SML, to which lightweight parallel
constructs were added (e.g., parallel tuples, comprehensions, and bindings) [Fluet et al. 2010]. PML
also provided explicit concurrency based on a parallel implementation of the CML primitives [Reppy
et al. 2009]. The MLton SML compiler has been used as the base for a couple of projects exploring
parallel programming [Jagannathan et al. 2010; Westrick et al. 2019]. Various researchers have
also explored parallel garbage-collection techniques in SML implementations [Auhagen et al. 2011;
Cheng and Blelloch 2001; Sivaramakrishnan et al. 2014].

9.3 The Non-evolution of SML
The fact that the design of Standard ML has been frozen in time probably contributed to a decline in
its popularity in recent years. The reason for this stasis can be traced back to a debate that occurred
in 2001 — after the Definition (Revised) had been published, but while there was much activity on
SML implementations and on the Basis. At that time, there was discussion among many of the
SML implementors about ways to fix mistakes in the Definition (Revised) and to standardize useful
extensions to the language. This discussion prompted a message on September 25, 2001 from Robin
Milner and Mads Tofte to the sml-implementors list (hosted at sourceforge.net) that stated

. . .we will not accept further revision of Standard ML. It is natural that people discuss
changes and new features, and thus that successors of the language will arise. We
expect, however, the designers of any successor language to make it clear that their
language is not Standard ML.

This message led to a vigorous debate about the tension between preserving the stability of the
language and the need to iteratively improve it.105 While there are many (perhaps a majority) who
argued for continuing evolution of the language design, Milner and Tofte remained unconvinced.
Fundamentally, the problem was that the only way that the language could evolve was by

changing the Definition, but the Definition was a physical book that required agreement by its
authors and major effort to update (e.g., the Definition (Revised)). There was no institution, such as
a standards committee, that could maintain and update the Definition. Because Milner held the

105It should be noted that the authors were all in favor of continued evolution of the language.
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copyright on the Definition and because the TEX sources for the Definition were not available to
the community, there was to be no further evolution of the language.
As an alternative, an effort was started to design Successor ML as a collection of patches to the

revised Definition.106 These patches ranged from minor syntactic generalizations, to core-language
extensions (e.g., pattern guards and syntax for functional update of records), to module-language
extensions. Rossberg eventually created a version of his HaMLeT implementation of SML that
supported the Successor ML patches [2008]. More recently, the MLton and SML/NJ implementations
have started to support some of the core-language extensions of Successor ML.

9.4 Summary
While the Standard ML language has not changed over the past 20+ years, there continue to be at
least five actively supported implementations with an active user community. There are a number
of widely used systems, such as the Isabelle/HOL theorem prover, that are implemented in SML
and there are many research systems that use SML.

Standard ML occupies a “sweet spot” in the design space; it is flexible and expressive while not
being overly complicated — in contrast with many functional languages (e.g., Haskell, OCaml,
and Scala) that have very rich, but complicated, type systems, and so many features that most
programmers use only a subset of the language. SML’s elegance and simplicity is especially a virtue
in education, providing an ideal vehicle for teaching fundamental concepts. It has also proven to
be an effective tool for research, particularly in compilation, verification, and theorem proving, to
which its expressive power is ideally suited. In both teaching and research, its stability allows its
users to focus attention on their own work and avoid the distractions that arise when a language is
defined by an ever-changing implementation.
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A STANDARD ML IMPLEMENTATIONS
The existence of a formal definition of Standard ML has encouraged many implementations of the
language. These projects have had differing goals and have made various different implementation
tradeoffs, but they all essentially implement the same language. In this appendix, we provide a
brief survey of these efforts, listed in alphabetical order. We restrict this list to implementations of
the Standard ML and do not include related systems such as Manticore, Multi-MLton, or SML#.

A.1 Alice
Alice is a functional language developed at Saarland University as a sequel to the Oz language [Alice
2014; Rossberg et al. 2006]. The design of Alice is based on Standard ML, but adds extensions to
support concurrent, distributed, and constraint programming. Alice runs on a virtual machine that

106This effort was organized as a (now defunct) wiki; an archive of this wiki can be found at http://sml-family.org/successor-
ml/OldSuccessorMLWiki/Successor_ML.html or at https://web.archive.org/web/20190819224053/http://sml-family.org/
successor-ml/OldSuccessorMLWiki/Successor_ML.html.
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supports a completely machine independent execution model, which allows code to be migrated at
run time between machines with different architectures.

A.2 Edinburgh ML
Edinburgh ML was the first implementation of the language. During the SML design period it
was gradually modified to serve as an approximate prototype implementation of Standard ML
and it served as the initial development environment for Standard ML of New Jersey. It was a
reimplementation of Cardelli ML written in itself (with the runtime system written originally
in VAX assembler and later rewritten in C) [Mitchell 1983; Mitchell and Mycroft 1985], and was
developed by Alan Mycroft and Kevin Mitchell in the LFCS at Edinburgh, with later contributions
by John Scott.

A.3 HaMLeT
HaMLeT is a reference implementation of Standard ML that was developed by Andreas Ross-
berg [2013b]. The implementation attempts to follow the structure of the Definition as closely as
possible. It consists of a front-end that implements the statics and an interpreter that implements the
dynamics. It also includes a simple JavaScript code generator. One of the motivations for HaMLeT
is to support experiments in language design; to this end, it was used to implement the proposed
Successor ML features [2008].

A.4 The ML Kit
An effort begun at Edinburgh by Tofte and Turner and others to build an implementation that
was clearly derived from the Definition as a reference compiler [Birkedal et al. 1993; MLKit 2019].
The ML Kit compiler, which is actively maintained by Martin Elsman, uses a memory manager
based on region inference combined with a tracing garbage collector [Hallenberg et al. 2002]. It is
used as the front end for the SMLserver [Elsman and Hallenberg 2003] and to implement SMLtoJs
(pronounced “SML toys”), which is an SML compiler that runs in a web browser [Elsman 2011].

A.5 MLton
The MLton implementation of Standard ML started as a source-to-source defunctorizer for SML/NJ
written by Stephen Weeks [MLton-history 2014] in April 1997. The performance benefits for
functorized code motivated the start of a project to write a new SML compiler that used advanced
static analysis and aggressive whole-program optimization techniques. The resulting compiler
provides perhaps the best performance of any functional language compiler across a wide range
of benchmarks. The MLton implementation is still actively used and is maintained by Matthew
Fluet [MLton 2020].

A.6 MLWorks
Harlequin’s MLWorks was a commercial integrated development environment for SML that pro-
vided a rich set of graphical development tools [Haines 1991]. It is no longer supported, but its
source code is available on GitHub (https://github.com/Ravenbrook/mlworks).

A.7 Moscow ML
Moscow ML is a light-weight implementation of SML that uses the Caml Light bytecode interpreter
and runtime system. Version 1.00 was created in 1994 by Sergei Romanenko at the Russian Academy
of Sciences and Peter Sestoft in Copenhagen. Later contributors include Ken Friis Larsen and Niels
Kokholm. Claudio Russo added the full Standard ML module system (with some extensions) in 2000,
based on the theory developed in his PhD dissertation [1998]. Originally intended mostly to support
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a good teaching experience, Moscow ML has subsequently been used to build the HOL4 proof
assistant system, comprising several hundred thousand lines of code, and many other research
projects. Moscow ML is still maintained and is available from https://mosml.org.

A.8 Poly ML
Poly/ML was developed by David Matthews at Cambridge University; it gets its name from the
fact that the original implementation was written in the experimental language Poly [Matthews
1988], although more recent versions are written in SML [Matthews 1989]. For a while, Poly/ML
was licensed to Abstract Hardware Limited who used it to build hardware verification tools, but
Poly/ML has been open source since 1999 and is available from https://www.polyml.org.

A.9 Poplog/SML
The Poplog system developed at Sussex University in the early 1980s was an implementation of the
Pop-11 language (a descendant of Pop-2 [Burstall and Popplestone 1968]) that included support
for Prolog (hence the name). Subsequently, support for Common Lisp and later Standard ML was
added to the implementation; the SML implementation was owed to Robert Duncan and Simon
Nichols and corresponded roughly to the 1990 version of the language. While SML support still
appears to be part of the Poplog system, its support for the language was never updated to the 1997
version [POPLOG-SML 2019].

A.10 RML
The RML compiler, developed by Tolmach and Oliva [1998], was a compiler that translated SML to
Ada. Similar to the MLton compiler, which was being developed around the same time, the RML
compiler used whole-program monomorphization and defunctionalization, although its motivation
was to support interoperability with Ada (whereas the MLton compiler used these techniques to
enable aggressive optimization).

A.11 MLj and SML.NET
The MLj compiler was developed by Benton, Kennedy, Russell and at Persimmon IT’s Cambridge
research group in the late 1990’s and compiled Standard ML to Java Virtual Machine (JVM) byte-
code [Benton et al. 1998]. The MLj compiler is no longer supported, but its source code is available
from http://www.dcs.ed.ac.uk/home/mlj.

Subsequently, Benton and Kennedy moved to Microsoft Research in Cambridge England, where
they ported the MLj compiler to target Microsoft’s .NET platform [Benton et al. 2004]. This compiler,
called SML.NET, could be integrated into the Visual Studio IDE. The SML.NET compiler is also no
longer supported, but its source code is available at https://www.cl.cam.ac.uk/research/tsg/SMLNET.

A.12 Standard ML of New Jersey
Standard ML of New Jersey was originally developed by MacQueen and Appel at Bell Labs, Murray
Hill and Princeton University (hence the New Jersey) starting in the spring of 1986. The project was
an entirely fresh implementation whose aim was to produce high quality native code for efficient
execution. The compiler was written in Standard ML (after an initial, pre-bootstrap phase where
the implementation language was Edinburgh ML enriched with SML features). It initially produced
native machine code for VAX and Motorola 68000 family processors, but was later ported to the
SPARC, IBM RS6000 (Power), HPPA, Intel x86, and DEC Alpha, running under various flavors of
Unix, Microsoft Windows, and macOS. It is still actively supported by MacQueen and Reppy and is
available from https://smlnj.org.
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A.13 SML#
SML# is a dialect of Standard ML that generalizes the labeled record types of SML to support
a form of record polymorphism [Ohori 1992, 1995]. The language was developed by Atsushi
Ohori and his students. The implementation is actively maintained and is available from https:
//www.pllab.riec.tohoku.ac.jp/smlsharp.

A.14 TIL and TILT
The TIL SML compiler was developed at Carnegie Mellon University by Robert Harper, Peter Lee
and their students [Morrisett 1995; Tarditi 1996; Tarditi et al. 1996]. This compiler was novel in
that it used a strongly typed intermediate language to improve the efficiency of generated code for
polymorphic languages. The TILT (TIL Two) compiler [Petersen et al. 2000] extended the methods
of TIL to the full SML language and added the feature of generating typed assembly code [Morrisett
et al. 1998]. While TIL and TILT are no longer supported, the TILT source code can be found at
https://github.com/RobertHarper/TILT-Compiler.
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